

Draft Preliminary Environmental Assessment Report
Menlo Park Small High School Project 150 Jefferson Drive Menlo Park, California (SITE CODE 204273)
Sequoia Union High School District
480 James Avenue Redwood City, CA 94062
166-14-8
March 15, 2016

DRAFT

Sean M. Kenney Senior Staff Engineer

DRAFT

Kurt M. Soenen, P.E. Principal Engineer

1259 Oakmead Parkway | Sunnyvale, CA 94085 T 408 245 4600 | F 408 245 4620

TABLE OF CONTENTS

SECTI	ON 1.0:	INTRODUCTION	1
1.1		ESCRIPTION 1	
1.2	PLANN	IED DEVELOPMENT 1	1
1.3	-	BJECTIVES 1	1
SECTI	ON 2.0:	PRIOR ENVIRONMENTAL STUDIES	
2.1	SITE H	ISTORY	2
2.2		E I ESA – NOVEMBER 2014	
2.3	GENE	RAL SOIL QUALITY	3
2.4		RAL GROUND WATER QUALITY	
2.5		RAL SOIL VAPOR QUALITY	4
	ON 3.0:	AREAS OF CONCERN REQUIRING FURTHER EVALUATION	5
		ENVIRONMENTAL SETTING	
4.1	PHYSI	CAL SETTING	7
4.2		DGY AND HYDROGEOLOGY	
4.3		SURE PATHWAYS	
4.4		EPTUAL SITE MODEL	8
	ON 5.0:	IMPLEMENTATION OF PEA WORK PLAN	
5.1		IELD ACTIVITIES	
5.2		AMPLING	
	5.2.1	Soil Sampling Methods	
5.3		APOR SAMPLING	
	5.3.1	Temporary Subsurface Soil Vapor Probe Installation10	
	5.3.2	Soil Vapor Purging and Sampling Methods10	
	5.3.3	Temporary Probe Destruction Methods11	
5.4		SSION OF RESULTS	
	5.4.1	Environmental Screening Levels11	
	5.4.2	Summary of Soil Analytical Data11	
	5.4.3	Summary of Soil Vapor Analytical Data12	
5.5	-	TY ASSURANCE & QUALITY CONTROL12	
	5.5.1	Field Duplicates	
	5.5.2	Equipment Blank	
	5.5.3	Integrity of Soil Vapor Data13	
	5.5.4	Sample Receipt and Handling13	
	5.5.5	Laboratory Quality Control	
	5.5.6	Data Validation14	
-	ON 6.0:	HUMAN HEALTH RISK SCREENING EVALUATION	
-	ON 7.0:	CONCLUSIONS AND RECOMMENDATIONS	
	ON 8.0:	LIMITATIONS	
SECTI	ON 9.0:	REFERENCES	ô

FIGURES

FIGURE 1	VICINITY MAP
FIGURE 2	SITE PLAN
FIGURE 3	PROPOSED DEVELOPMENT
FIGURE 4	CONCEPTUAL SITE MODEL

TABLES

TABLE 1 – SOIL SAMPLE HANDLING AND TESTING REQUIREMENTS TABLE 2 – SOIL SAMPLING AND ANALYSES ACTIVITIES TABLE 3 – SOIL VAPOR SAMPLE HANDLING AND TESTING REQUIREMENTS TABLE 4 – ANALYTICAL RESULTS OF SOIL SAMPLES – LEAD / OCPs / PCBs TABLE 5 – ANALYTICAL RESULTS OF SOIL VAPOR SAMPLES – VOCS AND FIXED GASES

APPENDICES

APPENDIX A — COPIES OF DTSC CORRESPONDENCE

- APPENDIX B DATA SUMMARY TABLES CORNERSTONE 2014
- APPENDIX C BORING LOGS

APPENDIX D — ANALYTICAL DATA SHEETS AND CHAIN OF CUSTODY DOCUMENTATION

APPENDIX E - LEVEL II DATA VALIDATION PACKAGE AND SOIL VAPOR REPORTING LIMITS

APPENDIX F — HUMAN HEALTH RISK SCREENING EVALUATION REPORT AND CALCULATIONS

Type of Services	Draft Preliminary Environmental Assessment Report
Location	Menlo Park Small High School Project 150 Jefferson Drive Menlo Park, California (SITE CODE 204273)

SECTION 1.0: INTRODUCTION

This Preliminary Environmental Assessment (PEA) report was prepared at the request of the Department of Toxic Substances Control (DTSC) to evaluate current Site conditions at the planned Menlo Park Small High School Project located at 150 Jefferson Drive in Menlo Park, California (Site, Figures 1 and 2). This PEA report was prepared in accordance with the Revised PEA Work Plan dated November 13, 2015 prepared by Cornerstone Earth Group (Cornerstone). A copy of DTSC's PEA Work Plan approval letter dated November 30, 2015 is included in Appendix A.

This work was performed for the Sequoia Union High School District (District) in accordance with our agreement with the District dated December 1, 2015.

1.1 SITE DESCRIPTION

The approximately 2.17-acre property is located at 150 Jefferson Drive in Menlo Park and is currently occupied with an asphalt pavement parking lot and warehouse building. The Site is located in a commercial area and is bound to the north by Jefferson Drive. A 43,986 square-foot structure exists on the Site and is currently occupied by Bay Associates Wire Technologies. The majority of the building is used for manufacturing of custom cable and wire products with the northern portion utilized for administrative office space. The majority of the building work floor is raised approximately 4 feet above the parking lot grade to accommodate the truck-loading bays along the eastern portion of the building.

1.2 PLANNED DEVELOPMENT

The District is planning to redevelop the Site with the new Menlo Park Small High School Project. To prepare the school for the 2018-19 school year, the District will demolish the existing warehouse building and construct approximately 40,000 square feet of new high school structures and associated exterior play field and parking areas. The school will have capacity for 400 students and 35 faculty and staff. Potable water will be supplied by the local water service provider. The planned development is shown on Figure 3.

1.3 PEA OBJECTIVES

As defined by DTSC, Preliminary Endangerment Assessment (PEA) means an activity which is performed to determine whether current or past hazardous material management practices or waste management practices have resulted in the release or threatened release of hazardous materials, or whether naturally occurring hazardous materials are present, which pose a threat to public health or the environment. The PEA is also applicable to releases of hazardous materials.

Specific objectives of the PEA include:

- Determining if a release of hazardous wastes/substances/materials has occurred at a site and delineating the general extent of the contamination.
- Evaluate available information for indications of naturally-occurring hazardous materials at the site.
- Estimating the potential threat to public health and/or the environment posed by the site and providing an indicator of the relative risk.
- Determining if an interim action is required to reduce an existing or potential threat to public health or the environment.
- Completing preliminary project scoping activities to determine data gaps and identify possible remedial action strategies to form the basis for development of a site strategy.
- Providing the data and information to the DTSC.
- Assessing and providing for the informational needs of the community.

SECTION 2.0: PRIOR ENVIRONMENTAL STUDIES

In 2014, Cornerstone performed Phase I and II Environmental Site Assessment (ESA) studies at the Site as part of the District's acquisition of the property (Cornerstone, 2014a, 2014b). A geotechnical investigation was also performed (Cornerstone, 2014c). Selected information from these reports is presented below. Data summary tables for the December 2014 Phase II investigation are included in Appendix B. Please refer directly to these documents for a more complete overview of the Site.

2.1 SITE HISTORY

Based on the information obtained during the Phase I ESA, the Site appears to have been undeveloped land until construction of the existing building in approximately 1962. Building plans from 1962 indicate that the building was constructed for Bucal, Inc., however, it is not known if Bucal, Inc. ever occupied the building. Scientific Products, a division of American Hospital Supply Corporation, is listed in city directories as an occupant of the building between at least 1963 and 1975. Jonker Business Machines (along with Scientific Products) also was identified as an occupant in a 1970 city directory. Bay Associates Wire Technologies, the current occupant, appears to have occupied the building since the late 1970s or early 1980s.

2.2 PHASE I ESA – NOVEMBER 2014

Provided below is a summary of potential environmental concerns identified in Cornerstone's November 5, 2014 Phase I ESA prepared for the Site.

At the time of our study, hazardous materials used at the Site by Bay Associates consisted mainly of methyl ethyl ketone (MEK), tetrahydrofuran (THF), isopropyl alcohol (IPA) and solvent based marking inks. These materials are stored within metal flammable materials storage cabinets. Hydraulic fluid, EDM dielectric oil, EnSolv (n-propyl bromide) and cutting fluids (way oil) also were observed at the Site. Hazardous wastes are stored within a canopy-covered and fenced enclosure located along the southern exterior side of the building.

Details regarding hazardous materials use by occupants prior to Bay Associates were not identified within the data sources researched during the Phase I ESA. However, building plans from 1962 show a chemical storage room with explosion proof fixtures within the southeast corner

of the building. This chemical storage room and associated fixtures were relocated to the southwest corner of the building in 1970. The presence of the former chemical storage rooms suggests that activities by prior occupants involved the use of hazardous materials.

Based on the data reviewed, the Site appears to be located within an area where volatile organic compounds (VOCs) from an unidentified source are present in ground water. Perchloroethene (PCE) and trichloroethene (TCE) concentrations have been reported in ground water at adjacent properties at concentrations that exceeded its drinking water Maximum Contaminant Level (MCL) of 5 micrograms per liter (5 µg/L). Additional information pertaining to the regional solvent plume is presented in Section 3.3 of this PEA Report.

The United States Environmental Protection Agency (EPA) recommends further evaluation of potential vapor intrusion concerns for buildings overlying PCE/TCE impacted ground water that exceed 5 μ g/L. Vapor intrusion generally occurs when there is a migration of volatile chemicals from contaminated ground water or soil into an overlying building. Volatile chemicals such as PCE and TCE can emit vapors that may migrate as vapors through subsurface soils and into indoor air spaces of overlying buildings.

- A railroad track spur historically extended onto the southern portion of the Site. The former railroad tracks and wooden ties appear to have been removed. Assorted chemicals historically were commonly used for dust suppression and weed control along rail lines.
- Based on our review of geologic maps, the Site is located approximately 4½ miles from the nearest ultramafic rock outcrop that may contain naturally occurring asbestos (NOA).

2.3 GENERAL SOIL QUALITY

During Cornerstone's December 2014 Phase II investigation, fill and native soil samples were collected from 18 exploratory borings and were analyzed for various organic and inorganic compounds including petroleum hydrocarbons, VOCs, polyaromatic hydrocarbons (PAHs), semi-VOCs (SVOCs), polychlorinated biphenols (PCBs), organochlorine pesticides (OCPs), metals, and/or asbestos. With exception to concentrations of oil-range total petroleum hydrocarbons (TPH-oil) detected in 2 of 12 soil samples at 77 milligrams per kilogram (mg/kg) and 130 mg/kg (ESL¹ is 100 mg/kg for odor/nuisance concerns) and low concentrations (i.e., less than environmental screening criteria) of diesel-range total petroleum hydrocarbons (TPH-diesel) (detected in 6 of 12 soil samples) and anthracene (detected in 1 of 3 soil samples), no analytes were detected above their respective laboratory reporting limit. The detected metal concentrations appear typical of natural background and/or less than their respective residential screening criteria.

Based on the analytical data, soil quality at the locations sampled near the former rail spur line and fill soil placed at the Site does not appear significantly impacted. Additionally, NOA does not appear to be a significant concern at the Site.

As noted, one soil sample collected from the boring advanced near the exterior hazardous waste storage area (SB-1) detected TPH-oil at 130 mg/kg. Note that its residential ESL for direct exposure human health concerns is 11,000 mg/kg.

¹ Detected soil contaminants were compared to DTSC-recommended residential Screening Levels (DTSC-SLs) presented in the DTSC Office of Human and Ecological Risk (HERO) guidance document *Human Health Risk Assessment (HHRA) Note* 3 updated January 2016 (HERO, 2016). If a DTSC-SL is not established, the soil results were compared to residential Regional Screening Levels (RSLs) established by USEPA Region 9 (USEPA, 2015). For detected chemicals for which RSLs have not been established, Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (Water Board, 2016) were used for comparison. Metal concentrations were also compared to regional published background concentrations (Scott, 1991; Bradford, 1996; LBNL, 2009; and Duverge, 2011).

2.4 GENERAL GROUND WATER QUALITY

Laboratory analyses of the grab ground water samples collected from the exploratory borings during Cornerstone's December 2014 investigation did not detect SVOCs, BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), gasoline-range total petroleum hydrocarbons (TPH-gasoline), fuel oxygenates and/or other VOCs above their respective laboratory reporting limits except for 1,1-dichloroethene (1,1-DCE) and TPH-diesel/oil. 1,1-DCE was detected in 4 of 8 grab ground water samples at concentrations ranging from 1.2 micrograms per liter (μ g/L) to 2.1 μ g/L; its drinking water MCL² is 6 μ g/L. The 1,1-DCE detections were found in the grab ground water samples collected from the borings advanced along a hypothetical line extending from the approximate northwest corner to southeast corner of the property (SB-5, SB-4, SB-3, and SB-8). The source of 1,1-DCE detected in the grab ground water samples is not known but is likely associated with the ground water solvent plume reported in the regional area. 1,1-DCE is a breakdown product of PCE, TCE and cis-1,2-dichloroethene (cis-1,2-DCE). As discussed in Section 3.3 of this PEA Report, these compounds have been detected on properties north and south of the Site. Regulatory agencies have not identified a responsible party for the solvent release(s).

TPH-oil was detected in 3 of 8 grab ground water samples at concentrations of $350 \mu g/L$, $800 \mu g/L$, and $1,000 \mu g/L$, respectively. The greatest concentrations were detected from the two borings advanced near the southeast corner of the Site (SB-3 and SB-8); TPH-diesel also exceeded its ESL of $100 \mu g/L$ in these two samples. Note that only low to non-detectable concentrations of TPH-diesel/oil were reported in the three soil samples collected from the upper approximate 10 feet from borings SB-3 and SB-8. This data indicates a significant soil source likely does not exist at these locations.

The source of the TPH-affected ground water is not known but may be associated with possible localized minor spills/releases and/or associated with an off-Site release. Moderate and heavy-range petroleum hydrocarbons are relatively immobile in the environment and typically are limited in extent. The TPH-impacted ground water would be expected to degrade over time due to natural attenuation processes. These impacts do not appear to pose a significant risk to human health in a school setting.

2.5 GENERAL SOIL VAPOR QUALITY

To assist in evaluating potential vapor intrusion concerns, during Cornerstone's December 2014 investigation co-located sub-slab and subsurface soil vapor samples were collected at eight locations inside the on-Site building. The sub-slab samples were collected in the aggregate material immediately below the concrete floor slab. The subsurface samples were collected from approximate depths of 5 or 10 feet. An outdoor ambient air sample was also collected to assist in evaluating outdoor air quality.

Laboratory analyses of the eight sub-slab and eight subsurface soil vapor samples detected several VOCs; however, no chlorinated VOCs associated with the regional solvent plume (i.e., PCE/TCE and their breakdown products) were detected above their respective laboratory reporting limits.

Following CalEPA and DTSC guidance, the detected VOCs were compared to calculated sub-slab and subsurface screening criterion that are 20 times (attenuation factor = 0.05) and 1,000 times (attenuation factor = 0.001) the indoor air RSL, respectively. For example, the residential (unrestricted use) indoor air DTSC-SL for benzene is 0.097 micrograms per cubic meter (μ g/m³). The calculated sub-slab and subsurface screening levels for benzene are 1.94 μ g/m³ and 97 μ g/m³, respectively. None of the detected VOCs exceeded their respective calculated environmental screening criteria with exception of benzene and chloroform.

Benzene concentrations in the eight subsurface soil vapor samples ranged from 5 to 220 μ g/m³ with two samples exceeding its calculated screening level of 97 μ g/m³. Both of the elevated benzene

² Detected contaminants in ground water were compared to Maximum Contaminant Levels (MCLs) established by State Water Resources Control Board (September 2015). For detected chemicals for which MCLs have not been established, ESLs established by the San Francisco Bay Regional Water Quality Control Board (Water Board, 2016) were used for comparison.

concentrations were reported in the soil vapor samples collected within the building from an approximate depth of 10 feet below the elevated concrete floor slab. Benzene was not detected above its laboratory reporting limit in the eight sub-slab soil vapor samples. As noted above, benzene also was not detected in the eight grab ground water samples and selected soil samples collected at the Site.

The source of benzene detected in the subsurface soil vapor samples is not known; however, based on the available data and comparison to the selected screening criteria used by DTSC, the elevated benzene concentrations in soil vapor do not appear to be a Site-wide concern. Additionally, oxygen concentrations in the sub-slab vapor samples ranged from 16 to 20 percent and may explain why benzene was not detected above its laboratory reporting limit in the sub-slab samples. Petroleum hydrocarbon vapors will naturally degrade in an aerobic environment thus reducing the potential for petroleum hydrocarbon vapor intrusion concerns.

Chloroform was detected in 2 of 8 sub-slab soil vapor samples at concentrations of 5.5 μ g/m³ (SV-1) and 18 μ g/m³ (SV-5); its calculated screening level is 2.4 μ g/m³. Chloroform was not detected above its laboratory reporting limit in the eight subsurface soil vapor samples. Similar to benzene, chloroform also was not detected in the eight grab ground water samples and selected soil samples collected at the Site, including the soil samples collected from the SV-1 and SV-5 borings. The source of the chloroform detected in the subsurface vapor samples is not known but may be associated with indoor air contamination inside the building associated with the existing tenant operations. Ambient barometric pressure forces can transfer indoor air across the floor slab via cracks and/or penetrations and into underlying soil. This natural process may also explain the occurrence of other VOCs detected at low concentrations in the soil vapor samples.

SECTION 3.0: AREAS OF CONCERN REQUIRING FURTHER EVALUATION

This section presents the areas of potential concern requiring further evaluation that were identified during the District's scoping meeting with DTSC on June 16, 2015. A sampling and analyses plan to evaluate these areas of concern was presented in Cornerstone's Revised PEA Work Plan that was approved by DTSC in their letter dated November 30, 2015.

3.1 PEST CONTROL AND LEAD-BASED PAINT RESIDUE

Due to the age of the existing building, there is a potential that termiticides may have been sprayed near building foundations. Organochlorine pesticides were commonly used as insecticides for termite control around structures (DTSC, 2006). Since termiticides typically were applied adjacent to building foundations, the pesticide concentrations generally are highest closest to the exterior wall and decrease laterally away from the structures. Additionally, based on the age of the existing building, possible past lead-based paint (LBP) residue may have impacted shallow soil quality. Weathering, scraping, chipping, and abrasion could cause lead to be released to and accumulate in soil near the structure.

3.2 POLYCHLORINATED BIPHENYLS (PCB) TRANSFORMER

A PG&E transformer is located near the northeast corner of the Site. There is a potential that PCBs may have been historically used within the transformer. PCBs are man-made chemicals commonly used in the past as coolants and lubricants. PCBs are found as a clear to yellow, heavy oily liquid or waxy solid. PCBs were frequently used as insulation in electrical equipment because of their stability, low water solubility, high boiling point, low flammability, and low electrical conductivity. Prior to 1978, PCBs were often used in the manufacture of transformers and capacitors, and leaks or releases from transformers producing contaminated areas have been documented. The age of the transformer does not necessarily indicate the presence or absence of impacts to soil from PCBs, as releases of PCBs from a previous transformer may have occurred before its replacement. Once released to the environment, PCBs bind to soil particles and are very persistent.

Additionally, potential sources of PCBs in buildings constructed or renovated between approximately 1950 and 1979 include caulking used around windows, door frames, building joints, masonry columns and other masonry building materials. Based on the information obtained during the Phase I ESA, the Site appears to have been developed with the existing building in approximately 1962. PCB-containing caulk may be present on the exterior of the building as well as in surrounding surfaces.

3.3 REGIONAL VOC GROUND WATER PLUME

Based on the information sources reviewed during Cornerstone's Phase I ESA, the Site appears located in an area where chlorinated VOCs from an unidentified source are present in ground water. A responsible party has not yet been identified by the regulatory agencies. Provided below is a summary of prior environmental studies performed on nearby properties where chlorinated VOCs in ground water have been reported.

A former warehouse building on the 149 Commonwealth Drive property reportedly was used exclusively for liquor storage and office space. In 1987, two ground water monitoring wells (MW-1 and MW-2) were installed on the 149 Commonwealth Drive property. VOCs, predominantly TCE at 630 μ g/L, were detected in ground water from well MW-2 located on the northeast portion of the property. Beta Associates (1987) subsequently installed four additional ground water monitoring wells (MW-3 to MW-6). TCE was reported at up to 925 μ g/L, predominantly in MW-2 and MW-6; well MW-6 was located on the adjacent property east of MW-2. Beta Associates concluded that, based on the data and knowledge of the property history, the VOC contamination appears to originate from an off-property source.

During the late 1980s and early 1990s, TCE was detected at up to 2,300 μ g/L (in MW-6) during subsequent sampling of ground water from the wells. During these sampling events, a southeasterly ground water flow direction was reported. However, as discussed in Section 4.2 of this PEA report, general regional ground water flow towards the north to northeast is anticipated.

In October 1998, the Water Board issued a no further action letter for the 149 Commonwealth Drive property that stated the following: *Groundwater monitoring data over the past seven years has indicated the presence of low levels of VOCs in shallow groundwater. Board staff agree that these chemicals most likely originate from an up gradient and off-site source. Concentrations of these compounds have decreased significantly within this period of time and currently only TCE is detectable in one well, MW-2, at a concentration of 5.3 µg/L. Additionally, the concentration of pollutants currently detected in groundwater beneath the property, whether they be from on- or off-site, do not represent a significant threat to water quality. Based on the information presented to the Board, and with the provision that the information provided to this agency was accurate and representative of site conditions, no further actions are required on the subject property.*

The San Mateo County Department of Environmental Health (DEH) files also contained a proposal prepared by EMCON in 1990 for the installation of ground water monitoring wells at 155 Jefferson Drive (located across Jefferson Drive to the northeast of the Site). EMCON noted that four soil borings were previously drilled along the perimeter of the 155 Jefferson Drive property and soil and ground water were sampled. The samples reportedly were analyzed for chlorinated VOCs and aromatic VOCs. Chlorinated VOCs reportedly were detected in the ground water from three of the four borings; the laboratory results were not described. EMCON stated that the property is in an area of Menlo Park that has ground water contamination known to exceed California drinking water MCLs for VOCs and that the source of ground water contamination is unknown.

The DEH files also contained a Water Board no further action letter for 141 Jefferson Drive, located across Jefferson Drive from the Site. The letter states that low levels of VOCs were detected in ground water at 141 Jefferson Drive, including PCE at 11 μ g/L, cis-1,2-DCE at 33 μ g/L and Freon 113 at 8 μ g/L.

3.4 RADON

Elevated levels of radon in indoor air are a result of radon moving into buildings from the soil, either by diffusion or flow due to air pressure differences. The ultimate source of radon is the uranium that is naturally present in rock, soil, and water. Some types of rocks are known to have uranium concentrations greater than others and, consequently, there is an increased chance of elevated radon concentrations in soils and weathered bedrock where they are located. Areas down-slope which received sediments and/or surface and ground water from rock units with above average uranium content also have an increased likelihood of elevated radon concentrations in soil gas. In California, bedrock that can contain above average uranium concentrations includes the Monterey formation, asphaltic rocks, marine phosphatic rocks, granitic rocks, felsic volcanic rocks, and certain metamorphic rocks.

The federal EPA has established an action level of 4 pCi/L, above which the EPA recommends taking action to reduce radon levels in structures. To help local, state, and federal agencies prioritize resources and implement radon-control building codes, the EPA published maps of radon hazards for each county in California (<u>www.epa.gov/radon/zonemap/california.htm</u>).

Radon potential maps are provided in the 2014 California Geological Survey (CGS) Special Report 226, titled *Radon Potential in San Mateo County, CA (CGS 2014)*. These maps were prepared based upon 1) indoor-radon data; 2) National Uranium Resource Evaluation (NURE) airborne equivalent uranium (eU) data; and 3) Natural Resources Conservation Service (NRCS) soil data for permeability and shrink-swell character. As shown on the map provided in Appendix D, the Site is not located in a "High" or "Moderate" zone having potential for indoor radon levels to exceed the federal EPA action level. The Site is located in the "Unknown" radon zone. Geologic units with insufficient data from within San Mateo County and from previous studies were assigned "unknown" radon potential.

SECTION 4.0: ENVIRONMENTAL SETTING

4.1 PHYSICAL SETTING

A 1997 USGS 7.5 minute topographic map was reviewed to evaluate the physical setting of the Site. The Site's elevation is approximately 10 feet above mean sea level; topography in the vicinity of the Site slopes downward gently to the northeast towards the San Francisco Bay.

4.2 GEOLOGY AND HYDROGEOLOGY

The Site is located within the Santa Clara Valley, which is a broad alluvial plane between the Santa Cruz Mountains to the southwest and west, and the Diablo Range to the northeast. The San Andreas Fault system, including the Monte Vista-Shannon Fault, exists within the Santa Cruz Mountains and the Hayward and Calaveras Fault systems exist within the Diablo Range.

Based on Cornerstone's subsurface investigation, the concrete slab section for the existing raised building consisted of approximately 5 to 11 inches of concrete over approximately 4 feet of fill. The fill consists of varying amount of clay, sand, and gravel. The northern at-grade administrative office space consisted of approximately 6 inches of concrete over 3 inches of sand and 3 inches of coarse gravel fill followed by approximately 1½ feet of fill consisting of sandy clay with gravel. Exterior surface pavements generally consisted of 3 to 4 inches of asphalt concrete over approximately 3 inches of aggregate base.

Native subsurface materials observed below fill and aggregate base consisted of several feet of very stiff to hard fat clay underlain by medium stiff to hard lean clay with varying amounts of sand. Increased sand and gravel content were observed at approximately 14 feet below the asphalt pavement grade at several boring locations; free ground water was observed in this layer.

Ground water was observed at depths ranging from approximately 11 to 16 feet below the asphalt pavement surface. All measurements were taken at the time of drilling and may not represent the

stabilized levels that can differ from the initial levels encountered. Regional ground water flow is assumed to be in the north-northeast direction toward the San Francisco Bay; however, variable flow directions have been reported.

4.3 EXPOSURE PATHWAYS

Exposure pathways are the mechanisms by which a receptor (e.g. construction worker or future site user) may contact contaminants of concern at the Site. Exposure pathways consist of three parts: (1) a source of contaminants, (2) an exposure point where the receptor may come into contact with contaminants (e.g. contaminated soil, drinking water, and/or indoor air), and (3) an exposure route (e.g. dermal, ingestion, and/or inhalation).

As discussed in Section 3, contaminants of potential concern (COPC) in shallow soil consist of organochlorine pesticides, lead, and PCBs. The physical characteristics of the COPC in soil at the Site make them relatively persistent and immobile. These COPC typically do not readily dissolve in water and migrate to ground water, as they readily adsorb to soil particles. The COPC will not readily volatilize or migrate as vapors. The COPC are expected to persist in surface soil with the highest concentrations located near the surface. These chemicals may migrate if adsorbed to soil particles that become entrained into ambient air as a result of wind erosion of surface soil.

As is typical to most regional VOC ground water contamination plumes, volatilization of contaminants located in the subsurface soils and ground water and the subsequent mass transport of these vapors into indoor spaces constitute a potential inhalation exposure pathway.

Since Site ground water is not currently used for drinking water purposes, and the VOC-impacted ground water beneath the Site is associated with off-Site sources, the ground water exposure pathway is not complete and does not need to be further evaluated.

4.4 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) was developed to assist in understanding Site conditions and potential pathways by which humans may be exposed to contaminants of concern at the Site. The CSM is based on the known Site history and results of the data collected at the Site to date. An exposure pathway is considered complete if it presents a means of exposure to a receptor. A complete exposure pathway includes all of the following: a source of contamination, release mechanism, transport mechanism, exposure point, and a receptor. Figure 4 presents the CSM for the Site.

SECTION 5.0: IMPLEMENTATION OF PEA WORK PLAN

5.1 PRE-FIELD ACTIVITIES

Approximately 7 days before starting field work, the District issued a DTSC-approved Field Work Notice to neighboring businesses within line of sight of the school property. A copy of the notice is included in Appendix A.

5.2 SOIL SAMPLING

On December 9, 2015, Cornerstone's field engineer implemented the soil sampling and analyses plan presented in the DTSC-approved Revised PEA Work Plan. Table 1 presented below summarizes the soil sample handling and testing requirements; Table 2 presents the implemented sampling and analysis activities. Approximate sampling locations are shown on Figure 2.

Chemical(s)	Test Method	Minimum Reporting Limits*	Preservative	Hold Times
OCPs	8081A	2 μg/kg 40 μg/kg for Chlordane	4º C	14 Days
PCBs	8082A	50 µg/kg	4º C	14 Days
Lead	6010B	0.5 mg/kg	4º C	180 Days

 Table 1. Soil Sample Handling and Testing Requirements

* For samples with no dilution. Reporting limits may be higher for samples that require dilution due to elevated COC.

		Commite	San	nple Anal	ysis	
Boring ID	Sample Location	Sample Depth (feet)	Lead	ocPs	PCBs	Area of Concern (AOC)
SB-11	West of Existing Building	0-0.5	Х	Х		LBP Residue, Pest Control
38-11	West of Existing Building	2-2.5		х		Pest Control
SB-12	North of Existing Building	0-0.5	Х	х	Х	LBP Residue, Pest Control, PCBs
3B-12	North of Existing Building	2-2.5		х	Х	Pest Control, PCBs
SB-13	East of Existing Building	0-0.5	Х	Х		LBP Residue, Pest Control
30-13	East of Existing Building	2-2.5		х		Pest Control
SB-14	Near PG&E Transformer	0-0.5			Х	PCBs
SB-14	Near PG&E Transformer	2-2.5			Х	PCBs
SB-15	Near PG&E Transformer	0-0.5			Х	PCBs
-15	Near PG&E Transformer	2-2.5			Х	PCBs
	ANALYSES TOTALS		3	6	6	

Table 2. Soil Sampling and Analysis Activities

5.2.1 Soil Sampling Methods

The subsurface exploration program was performed using Direct Push technology equipped with the Dual Wall Sampling System. The Dual Wall Sampling System helps prevent cross contamination between sampling intervals. The Dual Wall Sampler is comprised of two main components: an exterior steel casing and an inner sample barrel. The outer casing has a 2-inch outer diameter (OD) and a 1.5-inch inner diameter (ID). The sample barrel is 5 feet in length with a 1.375-inch outside diameter (OD) and a 1-inch inner diameter (ID). The Dual Wall sample barrel was loaded with a 5-foot acetate liner and installed inside the outer casing. The outer drive casing and inner sample barrel were then hydraulically pushed to a depth of approximately 5 feet. As these tools were advanced, the inner sampling barrel collected the soil core sample. This sampler was then retrieved while the outer casing remained in place, protecting the integrity of the hole. Where borings extended below 5 feet, a new sampler was lowered into place and advanced another 5 feet to collect the next soil sample. This process continued until the desired depth was reached. Our field engineer continuously logged the borings in general accordance with the Unified Soil Classification System (ASTM D-2487). All borings were sealed to the surface with cement grout upon completion of sampling activities.

The ends of the liners were covered in Teflon film, fitted with plastic end caps, and labeled with a unique identification number. The samples were then placed in an ice-chilled cooler and transported to a state-certified analytical laboratory with chain of custody documentation.

All sampling equipment was cleaned using distilled water and a Liquinox solution prior to use at each sample point. Additionally, seperate exterior steel casing and inner sample barrel were used at each boring location.

5.3 SOIL VAPOR SAMPLING

Between December 9, 2015 and December 21, 2015 Cornerstone's field engineer and geologist implemented the soil vapor sampling and analyses plan presented in the DTSC-approved Revised PEA Work Plan. Subsurface soil vapor samples were collected at two exterior locations (SV-9 and SV-10) and three building interior locations (SV-2, SV-3, and SV-7). The two exterior soil vapor probes were installed south and north of the existing building, respectively. The three interior soil vapor probes (SV-2A, SV-3A, and SV-7A) were installed near previous subsurface vapor probes (SV-2, SV-3, and SV-7) that were installed and sampled during Cornerstone's December 2014 investigation.

Table 3 presented below summarizes the soil vapor sample handling and testing requirements. Approximate sampling locations are shown on Figure 2.

Chemical(s)	Test Method	Minimum Reporting Limits*	Hold Times
VOCs	TO-15	See Appendix E	30 Days
Fixed Gases (carbon dioxide, methane, and oxygen)	D-1946	0.023% for carbon dioxide 0.0003% for methane 0.23% for oxygen	30 Days

 Table 3. Soil Vapor Sample Handling and Testing Requirements

5.3.1 Temporary Subsurface Soil Vapor Probe Installation

Following completion of concrete coring activities, on December 9, 2015 our C-57 licensed drilling contractor used limited access drilling equipment to advance the soil vapor probes to varying depths below the asphalt pavement surface. To help limit potential soil consolidation caused by Direct Push drilling activities, hand auger equipment was used to extend the bottom section of each boring to its desired depth. Boring and well construction details are included in Appendix C.

The subsurface probes consisted of a stainless steel expendable vapor tip and screen installed at an approximate depth of 5 feet below the asphalt pavement surface; the vapor tip was affixed to stainless steel tubing. The vapor probes were constructed by first placing approximately 2 inches of coarse aquarium sand into the bottom of the borehole using a tremie pipe. The stainless steel tip and tubing was then lowered into the borehole via a tremie pipe. Additional sand was then placed in the borehole via tremie to create an approximately 1 foot sand pack interval around the vapor tip. Approximately 1 foot of granular bentonite (Benseal[™]) was placed on top of the sand pack via the tremie pipe. Bentonite "gel" was placed via tremie pipe on top of the dry granular bentonite to the surface. The stainless steel tubing was labeled with depth of placement and capped utilizing a vapor tight Swagelok valve set in the "off" position. A construction cone was placed over the probe until purging and sampling was performed.

5.3.2 Soil Vapor Purging and Sampling Methods

Due to low permeability clays beneath the Site, purging was performed in two steps. Approximately six days after probe installation, on December 15, 2015 the downhole shut off valve was opened and one purge volume of vapor was removed using a 1-liter summa canister. The volume of vapor removed was verified by the calculated pressure drop in the summa canister. The purge volume was calculated based on the length and inner diameter of the sampling probe, the connected sampling tubing and equipment, dry bentonite seal, and the borehole sand pack. At least three days after the initial purging, we returned to the Site for additional purging followed by sampling. Except at location SV-10, the purge volume during the second event was calculated similar to the first event. Due to observed back pressure at location SV-10, the purging volume was calculated based on the connected sampling tubing and equipment; the sand pack was excluded.

During the second round of purging then sampling, a 167 milliliters-per-minute flow regulator inclusive of particulate filter was fitted to the shut off valve and the other end to a "T" fitting. One end of the "T" was connected to the sampling summa canister. The other end of the "T" was affixed to a digital vacuum gauge and a 1-liter summa canister utilized for purging. Prior to purging, a minimum 10-minute vacuum tightness test was performed on the manifold and connections by opening and closing the 1-liter purge canister valve and applying and monitoring a vacuum on the vacuum gauge. The sample shut-off valve on the downhole side of the sampling manifold remained in the "off" position. Purging began when gauge vacuum was maintained for at least 10 minutes without any noticeable decrease (less than approximately 0.1 inches of mercury (Hg) for properly connected fittings).

Pentane was used as the leak detection compound during sampling by applying the pentane gas into the shroud atmosphere. Sampling began by opening the summa canister valve. Immediately upon opening the sampling valve, a shroud was placed over and enclosed the atmosphere of the borehole and entire sampling train including all connections.

Soil vapor sampling continued until limited vapor flow was observed and/or until the vacuum gauge indicated approximately 5 inches of Hg remaining. A data logging photoionization detector (PID) was utilized during sampling to monitor the atmosphere inside the shroud through a bulk head fitting. The logged data (at minimum thirty [30] second intervals) was corrected to parts per million by volume pentane concentrations and utilized to evaluate the integrity of the sampling train.

To confirm the pentane atmosphere, one confirmation sample was collected from the shroud atmosphere through the sampling port of the PID. The confirmation sample was collected using a summa connected to a flow controller within the shroud during sample collection. All field data, including equilibrium time, purge volume calculations and leak check measurements were recorded.

5.3.3 Temporary Probe Destruction Methods

Upon completion of soil vapor sampling activities and receipt of the analytical results, the soil vapor probes were removed and the boreholes were sealed to the surface with cement grout.

5.4 DISCUSSION OF RESULTS

5.4.1 Environmental Screening Levels

The soil and soil vapor sampling results collected during this PEA investigation were compared to residential DTSC-SLs. If a DTSC-SL has not been established, the soil results were compared to RSLs.

HERO HHRA Note 3 does not include environmental screening levels for comparison to subsurface soil vapor data. To evaluate potential vapor intrusion concerns, HERO recommends using the DTSC guidance document Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air dated October 2011 (DTSC, 2011). The indoor air residential DTSC-SLs were adjusted using the attenuation factors provided in the DTSC guidance. For this study, the future residential building type attenuation factor of 0.001 was used to calculate subsurface screening criterion.

5.4.2 Summary of Soil Analytical Data

The soil analytical results of the PEA investigation are presented in Table 4 in the Tables Section of this report. Analytical data sheets and chain of custody documentation are included in Appendix D. A brief discussion of the soil results is provided below.

 Lead was detected in 3 of 3 soil samples at concentrations up to 9.9 mg/kg, below its residential screening criteria of 80 mg/kg. The detected concentrations also appear within range of typical natural background.

 OCPs and PCBs were not detected above their respective laboratory reporting limits in the selected soil samples.

5.4.3 Summary of Soil Vapor Analytical Data

The analytical results of the soil vapor samples are summarized below and in Table 5 in the Tables section of this report. Chain of custody documentation and laboratory analytical datasheets are presented in Appendix D.

- Benzene was detected in 4 of 5 soil vapor samples at concentrations ranging from 4.2 μg/m³ (SV-9) to 23 μg/m³ (SV-7A). The detected concentrations are below the subsurface screening criterion for benzene of 97 μg/m³.
- Toluene was detected in 5 of 5 soil vapor samples at concentrations ranging from 7.3 μg/m³ (SV-2A) to 33 μg/m³ (SV-9). The detected concentrations are below the subsurface screening criterion for toluene of 310,000 μg/m³.
- Ethylbenzene was detected in 5 of 5 soil vapor samples at concentrations ranging from 12 μg/m³ (SV-3A) to 130 μg/m³ (SV-9). The detected concentrations are below the subsurface screening criterion for ethylbenzene of 1,100 μg/m³.
- 1,1,1-TCA was detected in 2 of 5 soil vapor samples at concentrations of 6.3 µg/m³ (SV-3A) and 45 µg/m³ (SV-7A). The detected concentrations are below the subsurface screening criterion for 1,1,1-TCA of 1,000,000 µg/m³.
- PCE was detected in 3 of 5 soil vapor samples at concentrations ranging from 9.3 µg/m³ (SV-9) to 29 µg/m³ (SV-3A). The detected concentrations are below the subsurface screening criterion for PCE of 480 µg/m³.
- Other VOCs were less frequently detected in the vapor samples including 1,1-DCE, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-trimethylpentane, 2-butanone (MEK), 4-ethyl toluene, acetone, carbon disulfide, cyclohexane, freon 113, heptane, hexane, isopropanol, isopropylbenzene, n-propylbenzene, o-xylene, and ethanol. These detected compounds did not exceed their respective calculated screening criterion.
- Leak detection compound pentane was detected in 3 of 5 soil vapor samples with concentrations ranging from 15 μg/m³ to 180 μg/m³.
- Oxygen concentrations in the five soil vapor samples ranged from 6.8 percent to 16 percent with the lowest concentrations detected in the sample collected from the subsurface probe installed at location SV-3A. Carbon dioxide levels ranged from 3.4 percent to 15 percent with the greatest concentrations detected in the SV-3A subsurface sample probe.

5.5 QUALITY ASSURANCE & QUALITY CONTROL

5.5.1 Field Duplicates

The field QA/QC procedures consisted of field duplicate collection and analysis. Field duplicate samples are two co-located samples of the same matrix, collected in the same approximate location and time, and similar overall homogeneity. Analysis of field duplicates provides a quantitative measure of the variability of the overall sampling and laboratory analysis process due to sample heterogeneity, sampling techniques, and/or analytical methods. The soil field duplicates were assigned a different sample ID but were packaged and transported in the same manner as the primary samples.

For this investigation, one field duplicate soil and soil vapor sample were collected from selected sampling locations. The soil field duplicate sample FD-1 was collected from sampling location SB-12 from approximately 2 to 2½ feet. The soil vapor field duplicate sample SV-3A (DUP) was collected from sampling location SV-3A.

As shown in Table 4, OCPs and PCBs were not detected in the soil sample field duplicate pair. The calculated average relative percent difference (RPD) of the two soil vapor samples was 24 percent. The RPD for the soil vapor field duplicate pair is within range of the EPA TO-15 method criteria for laboratory standard analysis.

5.5.2 Equipment Blank

Equipment blank samples are collected prior to sampling activities by pouring analyte free water (deionized water) over or through decontaminated field sampling equipment. Analysis of equipment blanks evaluate the adequacy of the decontamination process and assess contamination from the total sampling, sample preparation process, when decontaminated sampling equipment is used to collect samples. For this investigation, one equipment blank (EB-1) was collected from the hand sampling equipment used for soil sampling. The equipment blank was collected from sampling equipment following soil sampling activities at SB-12. Analytical results of the equipment blank did not detect OCPs and PCBs above their respective laboratory reporting limits.

5.5.3 Integrity of Soil Vapor Data

To help confirm the sampling trains were sufficiently tight and the soil vapor data is representative of subsurface conditions, one confirmation sample of the shroud atmosphere was collected by utilizing a 250 mL summa and micro flow controller connected to a bulkhead fitting through the shroud during sampling at soil vapor location SV-3A. Laboratory analyses of the shroud atmosphere sample detected pentane at 580,000 μ g/m³. During the same sampling time period (approximately 2.5 minutes), the shroud atmosphere was measured by the PID to range from approximately 300,000 μ g/m³ to 600,000 μ g/m³ with an average concentration of 461,747 μ g/m³ (approximately 23 percent relative percent difference [RPD] below the laboratory reported value). The PID appeared to slightly underestimate the shroud atmosphere.

Pentane was detected in 3 of 5 soil vapor samples above laboratory reporting limits; reporting limits ranged from 12 μ g/m³ to 14 μ g/m³. The maximum pentane detection in the soil vapor samples (180 μ g/m³ at SV-10) was used to estimate the maximum leakage rate, if any. The average shroud concentration of pentane measured with the PID during sampling at SV-10 was approximately 176,000 μ g/m³. The calculated maximum approximate leakage rate based on the detected concentration of 180 μ g/m³ pentane was 0.1%. This data indicates that the sample trains appeared sufficiently tight for soil vapor sample collection and no significant leakage occurred.

5.5.4 Sample Receipt and Handling

Sample handling and documentation was reviewed during the data quality assessment and included evaluating chain-of-custody documentation, technical sample integrity, preservation, and technical holding times. Samples were delivered to the analytical laboratory with proper chain-of-custody documentation. Sample cooler temperatures for samples submitted to Test America were recorded at the time of sample receipt. After transfer of sample custody to the laboratories, the samples were placed in storage refrigerators, maintaining a temperature of 6° Celsius or below. The analytical testing was performed within the technical holding times for sample preparation and analyses.

5.5.5 Laboratory Quality Control

Upon completion of field work, samples were delivered with proper chain-of-custody documentation to Test America Inc. and Eurofins AirToxics, a state-certified analytical laboratory. The analytical laboratory

QA/QC program included sample receipt verification, sample hold times, and the preparation and analysis of laboratory QC samples. Test America Inc. and Eurofins AirToxics laboratory QC samples included method blanks, laboratory control samples, matrix spike and matrix spike duplicates, and surrogate recoveries.

5.5.6 Data Validation

To help confirm the validity of the analytical data, Level II data validation was performed for the analytical data received from Test America Inc. and Eurofins AirToxics. Data validation is a sample-specific process implemented to determine the quality of a given data set beyond the method specification, determines any causes for non-conformance to the standard method, and verifies that the reported results are within acceptable ranges. The data evaluation was performed by third-party consultant Laboratory Data Consultants, Inc. (LDC) in Carlsbad, California. The data validation process did not reject the analytical results. The Level II Data Validation package is included in Appendix E.

SECTION 6.0: HUMAN HEALTH RISK SCREENING EVALUATION

Cornerstone retained Mr. Greg Brorby with ToxStrategies, Inc., a Diplomate of the American Board of Toxicology (DABT) to perform a human health screening level evaluation in general accordance with the methods outlined in DTSC's PEA Guidance Manual (DTSC, 2015). Except for the sub-slab soil vapor data and soil data representative of the fill beneath the raised warehouse, analytical results from Cornerstone's December 2014 Phase II investigation were included in the evaluation. Because of the planned demolition of the existing building and construction of a new at-grade school building, the December 2014 sub-slab vapor data and fill data were excluded.

The screening human health risk evaluation outlined in the PEA Guidance Manual is intended to be a health-conservative evaluation of potential risks posed by chemicals at a site. For example, this evaluation assumes a site will be used for residential purposes regardless of actual or intended land use. Non-cancer hazard quotients (HQs) and incremental lifetime cancer risks (ILCRs) are estimated using an established human health risk-based residential screening concentration and the maximum detected concentration for each chemical as follows:

HQ = Maximum concentration/Screening concentration

ILCR = (Maximum concentration/Screening concentration) × 10⁻⁶

Where:

The screening concentrations are based on a target HQ of one and a target ILCR of one-in-a-million (1×10^{-6}) .

The chemical-specific HQs and ILCRs are each summed, regardless of the location of the maximum detected concentrations, to estimate the total non-cancer hazard index (HI) and total ILCR, respectively. If the total HI exceeds a value of one, then HIs are re-calculated by summing HQs for chemicals affecting the same target organ (e.g., respiratory effects).

The screening concentrations used in this evaluation are RSLs for residential land use (Hazard Quotient [HQ] =1), modified as necessary based on HERO HHRA Note 3. The soil screening levels assume exposure via incidental soil ingestion, dermal contact with soil, and inhalation of vapors or resuspended particulates in ambient air. The soil vapor screening concentrations are based on DTSC-SLs for ambient air multiplied by a soil vapor to indoor air attenuation factor (AF) of 0.001 as recommended by DTSC for new buildings. RSLs were used in the event a DTSC-SL was not established for a specific analyte. DTSC-SLs and/or RSLs are available for the majority of compounds detected in soil and soil vapor samples at the Site. When necessary, surrogate compounds were identified based on similarity in chemical structure or physical characteristics. The RSL for trivalent chromium, rather than hexavalent

chromium, was used to evaluate total chromium detected in soil because, as noted above, total chromium concentrations are consistent with regional background.

As discussed in Section 2.3, TPH-diesel and TPH-oil were detected in several soil samples during Cornerstone's 2014 investigation. EPA has not developed RSLs for these petroleum hydrocarbon mixtures; therefore, in accordance with the PEA Guidance Manual, ESLs developed by the Water Board were used.

Additionally, lead typically is evaluated separately using the LeadSpread model; however, because the maximum detected concentration is less than the DTSC screening level of 80 mg/kg (which is based on LeadSpread), no further assessment of lead was performed.

The estimated noncancer HQs and ILCRs for the individual chemicals detected in soil are shown in the risk table included in Appendix F. To provide context for this evaluation, risk estimates were calculated for two cases: 1) all analytes detected above their respective method detection limit; and 2) all analytes detected but excluding metals because the reported metal concentrations appear consistent with regional natural background.

The majority of the non-cancer HQs and ILCRs for detections in soil are equal or less than the target HQ and ILCR of one and 1×10^{-6} , respectively; however, the HQ for two metals (arsenic and thallium) and the ILCR for arsenic, is above their respective target. As noted above, the detected metal concentrations appear consistent with regional background. When the HQs and ILCRs for metals are excluded, the HI is 0.2, and the ILCR is 8×10^{-7} .

The individual non-cancer HQs for chemicals detected in soil vapor are less than one, and the total HI is 0.3. The individual ICLRs for chemicals detected in soil vapor are less than 1×10^{-6} , except for benzene (2×10^{-6}). Note that the benzene concentration driving this risk calculation is from a soil vapor sample collected in November 2014 (220 µg/m³). The soil vapor collected at the same general location and depth in December 2015 detected benzene at 13 µg/m³. The total ILCR is 5×10^{-6} .

The cumulative non-cancer HI assuming exposure to chemicals in soil (excluding the naturally-occurring metals) and soil vapor is 0.5. The cumulative ILCR is 5×10^{-6} .

Based on the risk calculations, and considering the conservative nature of this screening level evaluation, ToxStrategies, Inc. concluded that potential exposure to future Site occupants via incidental soil ingestion, dermal contact with soil, inhalation of particulates or vapors in ambient air, and inhalation of vapors in indoor air as a result of vapor intrusion will not result in a public health risk under the conditions evaluated.

SECTION 7.0: CONCLUSIONS AND RECOMMENDATIONS

During this PEA investigation, soil and soil vapor sampling was performed to address the areas requiring further evaluation identified in the DTSC-approved PEA Work Plan. Soil samples were collected near the existing building to evaluate potential impacts from possible pest control spraying near the building perimeter, and potential impacts from building materials such as lead-based paint and/or PCB caulking compounds. Additionally, soil samples were collected near the existing PG&E transformer since there is a potential that PCBs may have been historically used within the transformer. Soil vapor sampling was performed to evaluate potential vapor intrusion concerns associated with the VOCs reported in ground water beneath the regional area from unidentified off-Site sources. As shown in Tables 4 and 5, laboratory analyses of the soil and soil vapor samples collected during this investigation did not detect COPC above residential (unrestricted use) environmental screening criteria.

As part of this study, a human health screening level evaluation was performed in general accordance with the methods outlined in DTSC's PEA Guidance Manual. This evaluation considered analytical results obtained during this PEA investigation and Cornerstone's 2014 study. Excluding the naturally-

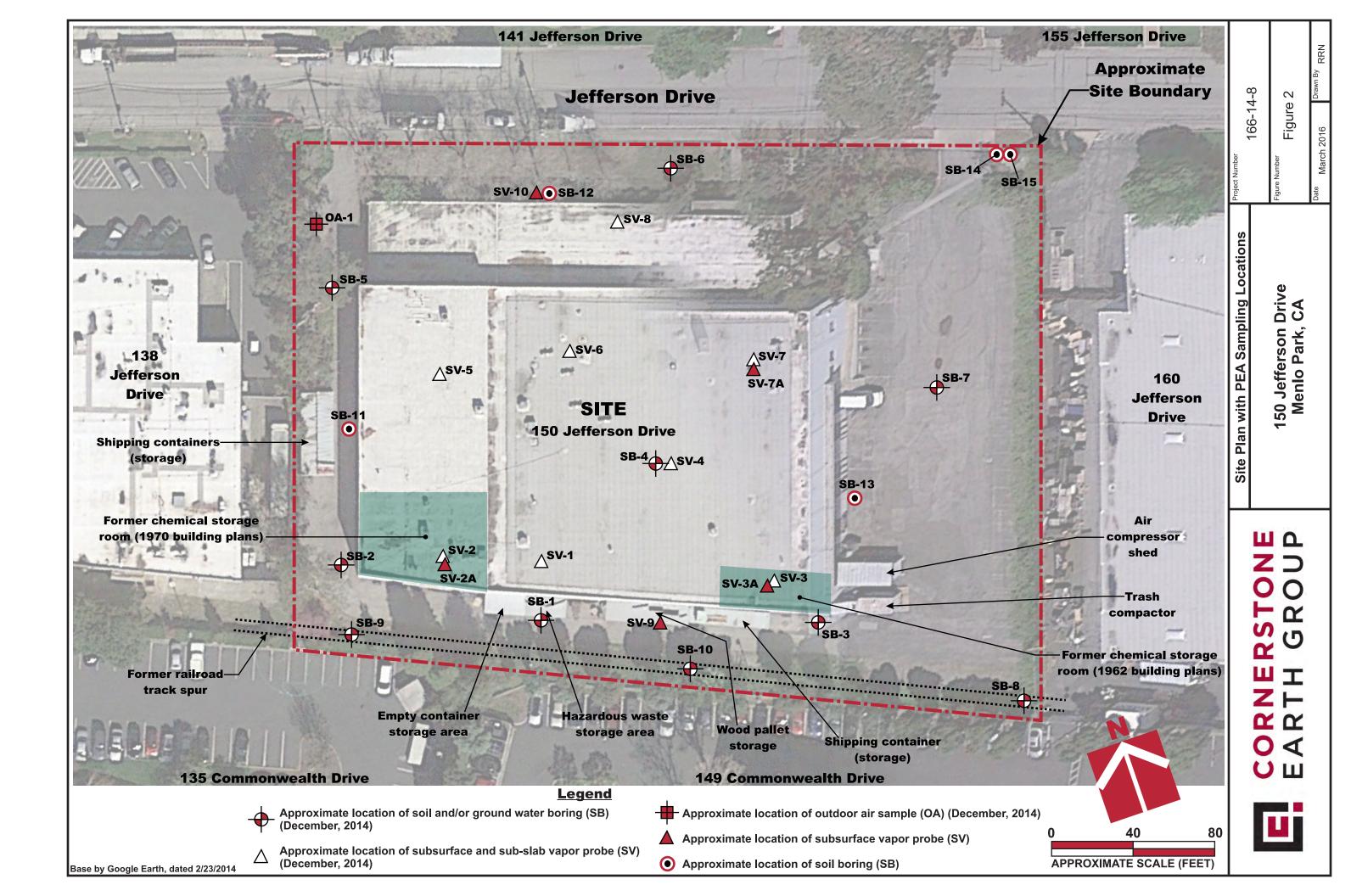
occurring metals, the cumulative non-cancer HI was estimated at 0.5, below the target HQ of one specified in the PEA Guidance Manual. The ILCR was estimated at five-in-a-million (5×10^{-6}) and slightly exceeds the target ILCR of one-in-a-million (1×10^{-6}) . It should be noted, however, that this risk calculation is driven by the benzene concentration detected in a soil vapor sample collected in November 2014 (220 μ g/m³). Laboratory analyses of the soil vapor collected at the same general location and depth during this PEA investigation detected benzene at 13 μ g/m³. Similar low concentrations were detected in the other soil vapor samples (up to 23 μ g/m³). Additionally, oxygen concentrations in the soil vapor samples collected in November 2014 and December 2015 ranged from 6.8 to 20 percent, indicating aerobic conditions. Petroleum hydrocarbon vapors, like benzene, will naturally degrade in an aerobic environment thus reducing the potential for petroleum hydrocarbon vapor intrusion concerns. Furthermore, to provide a higher level of protection to future occupants against potential vapor intrusion, the District is planning to voluntarily install an impermeable vapor barrier and ventilation system beneath the planned classroom building.

Based on the results of this PEA, the Site does not pose a significant risk to human health and the environment and appears suitable to accommodate the District's school redevelopment plans. We recommend DTSC consider a "No Further Action" determination for the Site.

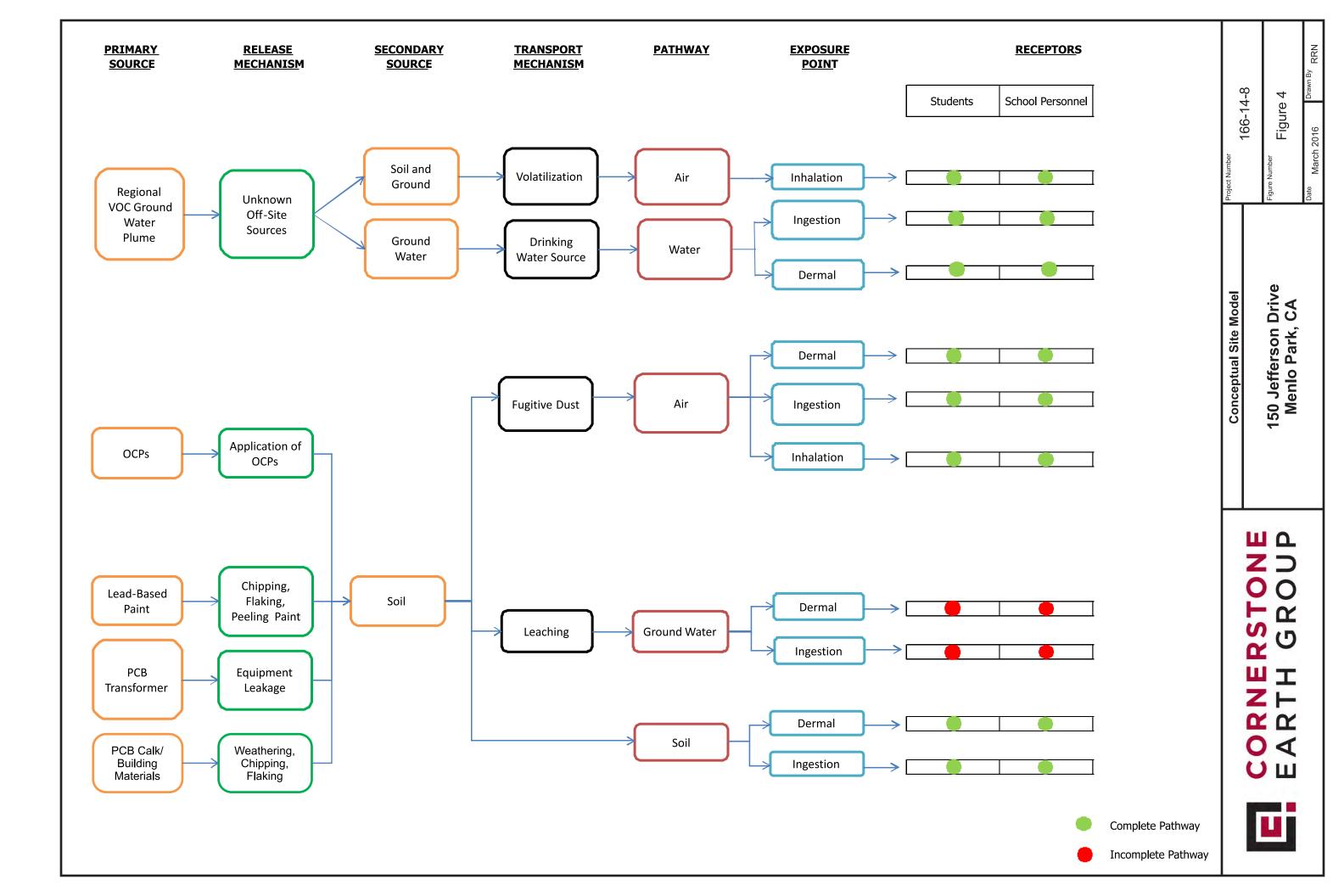
SECTION 8.0: LIMITATIONS

This report, an instrument of professional service, was prepared for the sole use of Sequoia Union High School District and the Department of Toxic Substances Control may not be reproduced or distributed without written authorization from Cornerstone. The chemical data presented in this report may change over time and are only valid for this time and location. Cornerstone makes no warranty, expressed or implied, except that our services have been performed in accordance with the environmental principles generally accepted at this time and location.

SECTION 9.0: REFERENCES


Bradford , et. al., March 1996. Background Concentrations in Soils in Northern Santa Clara County.

- CGS, 2014. California Geological Survey Special Report 226, Radon Potential in San Mateo County.
- Cornerstone, 2014a. Phase I Environmental Site Assessment, 150 Jefferson Drive, Menlo Park, California, dated November 5, 2014
- Cornerstone, 2014b. Soil, Soil Vapor, and Ground Water Quality Evaluation, 150 Jefferson Drive, Menlo Park, California, dated December 12, 2014
- Cornerstone, 2014c. Preliminary Geotechnical Investigation, 150 Jefferson Drive, Menlo Park, California, dated December 5, 2014.
- DTSC, 2006. Interim Guidance Evaluation of School Sites with Potential Soil Contamination as a Result of Lead From Lead-Based Paint, Organochlorine Pesticides from Termiticides, and Polychlorinated Biphenyls from Electrical Transformers, Revised 06/09/06.
- DTSC. October 2011. Final Guidance for the evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance).
- DTSC, 2015. Preliminary Endangerment Assessment (PEA) Guidance Manual, Revised October 2015.
- Duverge, Dylan Jacques. December 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region.
- HERO, 2016. HHRA Note Number 3, Use of USEPA Regional Screening Levels, updated January 2016.



- Lawrence Berkeley National Laboratory. 2009. Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory.
- San Francisco Bay, Regional Water Quality Control Board. Revised February 2016. Environmental Screening Levels. http://www.waterboards.ca.gov/sanfranciscobay/water/chemicalcontaminants.shtml/
- Scott, Christina M. 1991. Background Metal Concentrations in Soils in Northern Santa Clara County, California.
- State Water Resources Control Board. July 2014. Maximum Contaminant Levels (MCLs).
- U.S. EPA. Revised October 2015. *Regional Screening Level (RSL) Summary Table.* http://www.epa.gov/region9/superfund/prg/
- U.S. EPA. December 3, 2013. EPA Region 9 Guidelines and Supplemental Information Needed for Vapor Intrusion Evaluations at South Bay National Priority List (NPL) Sites.

Table 4. Analytical Results of Soil Samples - Lead / OCPs / PCBs (Concentrations in mg/kg)

Sample Location	Boring ID	Sample ID	Date	Depth (feet)	Lead	4,4´-DDD	4,4 ⁻ -DDE	4,4 ⁻ -DDT	PCBs
West of Existing Building	SB-11	SB-11 (0-0.5)	12/9/2015	0-1⁄2	7.4	<0.002	<0.002	<0.002	
West of Existing Dunuing	30 11	SB-11 (2-2.5)	12/9/2015	2-21/2		< 0.0019	< 0.0019	<0.0019	
	SB-12	SB-12 (0-0.5)	12/9/2015	0-1⁄2	9.9	< 0.002	< 0.002	<0.002	ND
North of Existing Building		SB-12 (2-2.5)	12/9/2015	2-21⁄2		< 0.0019	< 0.0019	< 0.0019	ND
	SB-12 Field Dup.	FD-1 (2-2.5)	12/9/2015	2-21⁄2		< 0.002	< 0.002	<0.002	ND
East of Existing Building	SB-13	SB-13 (0-0.5)	12/9/2015	0-1/2	8.8	<0.0019	< 0.0019	< 0.0019	
East of Existing Building	50-15	SB-13 (2-2.5)	12/9/2015	2-21/2		< 0.002	< 0.002	<0.002	
Near PG&E Transformer	SB-14	SB-14 (0-0.5)	12/9/2015	0-1⁄2					ND
Neal PG&E Transformer	3D-14	SB-14 (2-2.5)	12/9/2015	2-21/2					ND
Near PG&E Transformer	SB-15	SB-15 (0-0.5)	12/9/2015	0-1⁄2					ND
Neal PG&E Transformer	SB-15	SB-15 (2-2.5)	12/9/2015	2-21/2					ND
Decidentic DCL ¹	(1)	Carcir	nogenic Target Ris	k	400	2.3	2	1.9	VARIES
Residential RSL ¹ (Non-C	ancer Child Hazar	d	NE	NE	NE	37	VARIES
Residential DTS	$2 $ α^2	C	ancer Endpoint		NE	NE	NE	NE	NE
Residential DTS	5- 5L	Noi	ncancer Endpoint		80	NE	NE	NE	NE

1 Regional Screening Level (RSL), USEPA Region 9 - November 2015.

2 DTSC - Recommended Screening Level (SL), HERO Note 3 - January 2016

< Not detected (ND) at or above laboratory reporting limit (RL)

NE Not Established

--- Not Analyzed

Table 5. Analytical Results of Soil Vapor Samples - VOCs (Concentrations in µg/m³)

Sample Location	Boring ID	Sample I D	Date	Approximate Probe Depth (feet below existing street grade)	Benzene	Toluene	Ethylbenzene	1,1 - DCE	1,1,1-TCA	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	2,2,4-Trimethylpentane	2-Butanone (MEK)	4-Ethyl Toluene	Acetone	Carbon Disulfide
Inside West Former Chemical Storage Area	SV-2A	SV-2A	12/21/2015	5	9.9	7.3	25	<4.6	<6.3	18	7.6	< 5.4	< 1.4	20	<28	< 14
Inside East Former	SV-3A	SV-3A	12/21/2015	5	13	7.8	12	<4.5	6.3	14	<5.6	<5.3	< 1.4	13	<27	< 1.4
Chemical Storage Area	SV-3A Field Dup.	SV-3A(DUP)	12/21/2015	5	14	6.9	8.7	<4.5	<6.2	11	<5.6	<5.3	<13	10	<27	< 14
Inside Northeast Manufacturing Area	SV-7A	SV-7A	12/21/2015	5	23	24	52	4.8	45	22	11	<5.3	14	33	54	< 14
South of Existing Building	SV-9	SV-9	12/18/2015	5	4.2	33	130	<4.4	<6.0	69	25	21	<13	80	<26	< 1.4
North of Existing Building	SV-10	SV-10	12/18/2015	5	< 3.4	32	110	<4.2	<5.7	110	36	12	<12	120	26	21
	In	idoor Air Carcir	nogenic Target	Risk	0.36	NE	1.1	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residential RSL ¹ (HQ=1)	AF=0.0	001 ³ (Indoor Ai	r / Subsurface	Soil Gas)	3.6E+02	NE	1.1E+03	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residential RSL (HQ=1)		Indoor Air Nor	n-Cancer Haza	rd	31	5200	1000	210	5200	7.3	NE	NE	5200	NE	3,200	730
	AF=0.0	3.1E+04	5.2E+06	1.0E+06	2.1E+05	5.2E+06	7.3E+03	NE	NE	5.2E+06	NE	3.2E+06	7.3E+05			
	Ambient Air Cancer Endpoint					NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residential DTSC-SL ² AF=0.001 ³ (Indoor Air / Subsurface Soil Gas)				97	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
Residential D13C-SL	A	mbient Air Nor	n-Cancer Endp	oint	3.1	310	NE	73	1,000	NE	42	NE	NE	NE	NE	NE
AF=0.001 ³ (Indoor Air / Subsurface Soil Gas)					3.1E+03	3.1E+05	NE	7.3E+04	1.0E+06	NE	4.2E+04	NE	NE	NE	NE	NE

1 DTSC - Recommended Screening Level (SL), HERO Note 3 - January 2016

2 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015.

3 Calculated "contaminant source" screening level using an Attenuation Factor (AF) = 0.001 for future residential building type (DTSC, 2011)

< Not detected (ND) at or above laboratory reporting limit (RL)

NE Not Established

Table 5. Analytical Results of Soil Vapor Samples - VOCs

(Concentrations in µg/m³)

Sample Location	Boring ID	Sample ID	Date	Approximate Probe Depth (feet below existing street grade)	Cyclohexane	Freon 113	Heptane	Hexane	l sopropanol	Isopropylbenzene	n-Propylbenzene	o-xylene	PCE	Ethanol	Pentane	Carbon Dioxide (%)	Methane (%)	Oxygen (%)
Inside West Former Chemical Storage Area	SV-2A	SV-2A	12/21/2015	5	<4.0	< 8.9	<4.8	<4.1	18	<5.7	6	40	< 7.9	< 8.7	< 14	6.4	<0.00023	14
Inside East Former	SV-3A	SV-3A	12/21/2015	5	< 3.9	< 8.8	< 4.7	<4.0	12	<5.6	<5.6	18	29	<8.6	18	15	<0.00023	6.8
Chemical Storage Area	SV-3A Field Dup.	SV-3A(DUP)	12/21/2015	5	< 3.9	< 8.7	<4.6	<4.0	<11	<5.6	<5.6	15	27	<8.5	58	15	<0.00023	6.9
Inside Northeast Manufacturing Area	SV-7A	SV-7A	12/21/2015	5	<3.9	50	5.8	<4.0	31	9.9	10	71	9.8	17	15	6.2	<0.00023	13
South of Existing Building	SV-9	SV-9	12/18/2015	5	7	<8.5	33	7.4	<11	21	25	150	9.3	< 8.4	<13	3.4	<0.00022	16
North of Existing Building	SV-10	SV-10	12/18/2015	5	5.2	< 8.0	18	4	130	26	36	160	< 7.1	29	180	5.6	< 0.00021	16
	In	door Air Carcin	ogenic Target I	Risk	NE	NE	NE	NE	NE	NE	NE	NE	11	NE	NE	NE	NE	NE
Residential RSL ¹ (HQ=1)	AF=0.0	01 ³ (Indoor Ai	r / Subsurface	Soil Gas)	NE	NE	NE	NE	NE	NE	NE	NE	1.1E+04	NE	NE	NE	NE	NE
Residential RSL (HQ=1)		Indoor Air Nor	n-Cancer Hazar	d	6300	31,000	NE	730	210	420	1000	100	42	NE	1000	NE	NE	NE
	AF=0.001 ³ (Indoor Air / Subsurface Soil Gas)				6.3E+06	3.1E+07	NE	7.3E+05	2.1E+05	4.2E+05	1.0E+06	1.0E+05	4.2E+04	NE	1.0E+06	NE	NE	NE
		Ambient Air C		NE	NE	NE	NE	NE	NE	NE	NE	0.48	NE	NE	NE	NE	NE	
AF=0.001 ³ (Indoor Air / Subsurface Soil Gas)				NE	NE	NE	NE	NE	NE	NE	NE	4.8E+02	NE	NE	NE	NE	NE	
Residential DTSC-SL ² Ambient Air Non-Cancer Endp			n-Cancer Endpo	int	NE	NE	NE	NE	NE	NE	NE	NE	37	NE	NE	NE	NE	NE
	AF=0.001 ³ (Indoor Air / Subsurface Soil Gas)				NE	NE	NE	NE	NE	NE	NE	NE	3.7E+04	NE	NE	NE	NE	NE

1 DTSC - Recommended Screening Level (SL), HERO Note 3 - January 2016

2 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015.

3 Calculated "contaminant source" screening level using an Attenuation Factor (AF) = 0.001 for future residential building type (DTSC, 2011)

< Not detected (ND) at or above laboratory reporting limit (RL)

NE Not Established

APPENDIX A: COPIES OF DTSC CORRESPONDENCE

Department of Toxic Substances Control

Matthew Rodriquez Secretary for Environmental Protection Barbara A. Lee, Director 8800 Cal Center Drive Sacramento, California 95826-3200

Edmund G. Brown Jr. Governor

November 30, 2015

Ms. Louise Pacheco Assistant Project Manager Construction Sequoia Union High School District 480 James Avenue Redwood City, California 94062

APPROVAL OF REVISED PRELIMINARY ENVIRONMENTAL ASSESSMENT WORKPLAN, SEQUOIA UNION HIGH SCHOOL DISTRICT, MENLO PARK PROPOSED SCHOOL SITE (A.K.A. NEW EAST MENLO PARK MAGNET HIGH SCHOOL), 150 JEFFERSON DRIVE, MENLO PARK, SAN MATEO COUNTY (PROJECT CODE 204273)

Dear Ms. Pacheco:

The Department of Toxic Substances Control (DTSC) reviewed the Revised Preliminary Environmental Assessment Workplan (PEA Workplan – Cornerstone Earth Group, November 13, 2015) received on November 18, 2015. The PEA Workplan was revised in response to DTSC comments on the draft version forwarded in a letter dated September 10, 2015, and follow-up correspondence. The PEA Workplan includes project background information as well as proposed investigation activities.

According to the PEA Workplan, the approximately 2.17-acre project is located at 150 Jefferson Drive in Menlo Park, San Mateo County, California (Site). The Sequoia Union High School District (District) plans to redevelop the Site with the new East Menlo Park Magnet High School for the 2018–19 school year. The existing on-site building was constructed circa 1962 and is currently occupied by Bay Associates Wire Technologies for manufacturing of custom cable and wire products. The PEA Workplan includes activities to investigate lead and organochlorine pesticides in soils around the on-site building from lead-based paint and termiticide use, polychlorinated biphenyls in soils around the electrical transformer and the on-site building from the window caulking or glazing, and volatile organic compounds and fixed gases in soil-gas from the Site's current use and from the regional solvent plume that may pose a threat to human health and the environment.

Ms. Louise Pacheco November 30, 2015 Page 2

DTSC comments have been addressed and the revised PEA Workplan is hereby approved. If site conditions differ from those presented in the approved PEA Workplan, additional work may be necessary. In accordance with Education Code section 17210.1(b), the District must provide written notice to residents and businesses in the immediate area, approved in form by DTSC, at least five days in advance of field investigation activities. The intent of this requirement is to provide advance notice of fieldwork such as drilling, sampling, and other environmental data collection activities to anyone who lives or works in the line of sight of the Site. Please notify DTSC a minimum of 48 hours in advance of field work or schedule changes.

Pursuant to Education Code section 17213.1, subdivision (a)(6), at the same time the Draft PEA Report is submitted to DTSC, the District shall publish a notice that it has been submitted to DTSC in a local newspaper of general circulation and post the notice in a prominent manner at the Site. The notice should state the District's intent for making the PEA Report available for public review by either Option A (Education Code section 17213.1, subdivision (a)(6)(A)) or Option B (Education Code section 17213.1, subdivision (a)(6)(B)). A copy of the notice should be submitted to DTSC with the Draft PEA Report.

If you have any questions regarding the project, please contact me at (916) 255-6527 or via e-mail at Mellan.Songco@dtsc.ca.gov.

Sincerely,

Jan Elle

Av – Mellan Songco, MPA, Project Manager Northern California Schools Unit Brownfields and Environmental Restoration Program

(via e-mail) CC:

Mr. Thomas Booze, PhD Staff Toxicologist DTSC Human and Ecological Risk Office Thomas.Booze@dtsc.ca.gov

Mr. Sean Kenney Staff Engineer **Cornerstone Earth Group** Skenney@cornerstoneearth.com Mr. Jose Salcedo, PE Unit Chief DTSC Northern California Schools Unit Jose.Salcedo@dtsc.ca.gov

Mr. Kurt Soenen, PE **Principal Engineer** Cornerstone Earth Group Ksoenen@cornerstoneearth.com

SEQUOIA UNION HIGH SCHOOL DISTRICT

480 JAMES AVENUE, REDWOOD CITY, CALIFORNIA 94062-1098

CONSTRUCTION DEPARTMENT TEL. (650) 369-1411 x22356 FAX (650) 306-1791 BOARD OF TRUSTEES CARRIE DU BOIS LAURA MARTINEZ ALAN SARVER CHRIS THOMSEN ALLEN WEINER

JAMES LIANIDES SUPERINTENDENT

ENRIQUE NAVAS ASSISTANT SUPERINTENDENT

MATTHEW ZITO CHIEF FACILITIES OFFICER

Date:December 1, 2015TO:Neighbors in Proximity to 150 Jefferson Drive, Menlo Park, California 94025REGARDING:Environmental Investigation at Future East Menlo Park Magnet High School

We would like to provide you with advance notice of an environmental investigation which will be conducted at the future East Menlo Park Magnet High School Site located at 150 Jefferson Drive in Menlo Park, California. The investigation will be performed by a licensed contractor under the oversight of the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). The investigation will consist of the sampling of soils and soil vapors on this property for any hazardous materials. Although an assessment will be conducted, this does not mean hazardous substances are located on this property. Recently enacted state laws now require that the Site undergo a complete environmental review, and if necessary, a cleanup to protect students, faculty and staff who will occupy the school.

Field work is scheduled to begin on December 9, 2015 and may continue intermittently through December 2015. All field work will be conducted during normal business hours. It is not expected that any street closures will be necessary during the investigation.

The District will submit the results of this Preliminary Environmental Assessment (PEA) as a draft to DTSC for review and approval of a final draft. The PEA will include an assessment of whether hazardous materials are present and, if so, whether the materials are present in concentrations that would require some type of cleanup before using the property. The District will hold a 30-day public review and comment period on the draft PEA. Additionally, the District will hold a public hearing to discuss the investigation results and receive comments from the public. All comments received in this process shall be forwarded to DTSC for consideration. The draft PEA will be made available for review at two District repositories. Notice of the start of the 30-day review period, date of public hearing, and location of repositories will be published in a local paper of general circulation. When the public participation process is complete, DTSC will issue a final determination with regard to the PEA.

If you have any questions concerning the upcoming environmental investigation or other activities at the future East Menlo Park Magnet High School Site, please contact our Chief Facilities Officer Matthew Zito (from Sequoia Union High School District) at 650-369-1411 or via email at mzito@seq.org.

Thank you for your patience, understanding and support of our school district as we work towards opening a new school site.

Matthew Zito

APPENDIX B: DATA SUMMARY TABLES – CORNERSTONE 2014

Table 1. Analytical Results of Soil Samples - Metals

(Concentrations in mg/kg)

Sample Location	Boring I D	Soil Type	Sample I D	Date	Depth (feet)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Vanadium	Zinc
Outside Near Hazardous Materials Storage Area	SB-1	Native	SB-1 (1-1.5)	11/21/2014	1-1½	2	<3.4	97	<0.34	<0.43	110	21	56	<1.7	0.085	<1.7	64	100	53
Outside Near Former Chemical Storage Area - West	SB-2	Native	SB-2 (0.5-1)	11/21/2014	1⁄2-1	<1.9	<3.8	380	<0.38	0.53	33	8	25	3.9	0.044	<1.9	34	49	48
Outside Near Former Chemical Storage Area - East	SB-3	Native	SB-3 (0.5-1)	11/21/2014	<i>1</i> ⁄2-1	<1.5	3.7	210	0.5	<0.38	34	9.1	23	6.1	0.047	<1.5	37	32	48
Inside Near Center of Manufacturing Area	SB-4	Fill	SB-4 (1-1.5)	11/20/2014	1-1½	<1.4	7.6	310	0.28	<0.34	28	16	44	11	0.11	<1.4	35	38	69
Outside Southeast Corner of Site	SB-8	Native	SB-8 (0.5-1)	11/21/2014	1⁄2-1	<1.8	5.7	210	<0.35	<0.44	39	13	22	10	0.022	6.7	41	40	50
Outside Near Former Rail Spur Alignment - Southwest	SB-9	Native	SB-9 (0.5-1)	11/21/2014	¥2-1	<1.6	5.5	220	0.72	3.6	49	11	30	12	0.044	<1.6	45	48	62
Outside Near Former Rail Spur Alignment - South	SB-10	Native	SB-10 (0.5-1)	11/21/2014	<i>V</i> ₂ -1	<1.8	5.5	200	0.84	<0.44	49	11	28	6.3	0.028	<1.8	46	44	63
Inside North Office Space Area	SV-8	Fill	SV-8 (1-1.5)	11/20/2014	1-11/2	<1.7	4.4	95	<0.34	<0.43	29	9.1	21	6.6	0.093	<1.7	30	38	43
			Cancer End	point		NE	0.067 (11^7)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residential DTSC-SL ¹			Non-Cancer Er	ndpoint		NE	0.25	NE	15	5.2	36000	NE	NE	80 ³	0.89	NE	490	NE	NE
			Carcinogenic Ta	rget Risk		NE	0.68	NE	1600	2100	NE	420	NE	NE	NE	NE	15000	NE	NE
Residential RSL (HQ=1) ²			Non-Cancer Chil	ld Hazard		31	35	15000	160	71	120000	23	3100	400	11	390	1500	390	390
Scott, 1991 ⁴			Background F	Range			0.2 to 5.5		0.3 to 1.4	0.05 to 1.7	30.5 to 72		23.8 to 47.5	6.8 to 16.1	0.05 to 0.90		46.4 to 101	39 to 288	47.7 to 82.8
Scott, 1991		M	laximum Backgrour			22	20		3.2	14	170		67	54	1.3		145		120
Bradford, 1996 ⁵		L	Background F Upper Qua	0		0.15 to 1.95	0.6 to 11	133 to 1,400	0.25 to 2.7	0.05 to 1.7		2.7 to 46.9	9.1 to 96.4	12.4 to 97.1	0.05 to 0.90	0.1 to 9.6	9 to 509	39 to 288	88 to 236
Bradiord, 1990			0.73 <6	4.7	625	1.53	0.44	115	18.3	36.6	26.7	0.34	1.4	56	134	170			
LBNL, 2009 6		99 th Percentile 95% Upper Tolerance Limit (UTL)					28	410	1	5.6	120	25	63	43	0.42	4.8	272	90	140
95% Upper Tolerance Limit (UTL)					5.5	19.1 4.6	323.6	1	2.7	99.6	22.2	69.4	16.1	0.4	7.4	119.8	74.3	106.1	
Duverge, 2011 ⁷ 99 th Percentile						4.6													
	TTLC ⁸						500	10000	75	100	2500	8000	2500	1000	20	3500	2000	2400	5000
STLC ⁹ (mg/L)						500 15	5	10000	0.75	100	2500	80	2500	5	0.2	3500	2000	2400	250

 1
 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

 2
 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015

 3
 California Human Health Screening Level (CHHSL), CalEPA - September 2010.

Scott, Christina. December 1991. Background Metal Concentrations in Soils in Northern Santa Clara County. 4

5 Bradford, et. al. March 1996. Background Concentrations of Trace and Major Elements in California Soils.

6 LBNL, 2009. Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory.

Duverge, 2011. Establishing Backround Arsenic in Soil of the Urbanized San Francisco Bay Region. 7

Total Threshold Limit Concentration - California Code of Regulations, Title 22, Chapter 11, Article 3. 8

Soluble Threshold Limit Concentration - California Code of Regulations, Title 22, Chapter 11, Article 3. Not detected at or above laboratory reporting limit 9

<

Not Established NE

Not Analyzed

Table 2. Analytical Results of Soil Samples - TPH / VOCs / PAHs / SVOCs

(Concentrations in mg/kg)

Sample Location	Boring ID	Soil Type	Sample ID	Date	Depth (feet)	ТРН	ТРНо	трнд	втех	Fuel Oxygenates	Acetone	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	1,1 - DCE	1,1-DCA	Other VOCs	Anthracene	Other PAHs (EPA 8270C SIM)	SVOCs (EPA 8270)
Outside Near Hazardous Materials	SB-1	Native	SB-1 (1-1.5)	11/21/2014	1-1½	39	130	<0.26	ND	ND	< 0.052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	ND	< 0.067		ND
Storage Area	00 1	Native	SB-1 (9.5-10)	11/21/2014	9½-10	< 0.99	<49	< 0.2	ND	ND	< 0.041	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0041	< 0.0041	ND			
Outside Near Former Chemical Storage	SB-2	Native	SB-2 (0.5-1)	11/21/2014	¥2-1	24	77	< 0.31	ND	ND	< 0.061	<0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	ND	< 0.066		ND
Area - West		Native	SB-2 (9.5-10)	11/21/2014	9½-10	<0.98	<49	< 0.21	ND	ND	< 0.043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	< 0.0043	ND			
Outside Near Former Chemical Storage	SB-3	Native	SB-3 (0.5-1)	11/21/2014	¥2-1	7.7	< 50	<0.26	ND	ND	< 0.052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	ND	< 0.067		ND
Area - East		Native	SB-3 (9.5-10)	11/21/2014	9½-10	<1	<50	< 0.22	ND	ND	< 0.044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	ND			
Inside Near Center of Manufacturing Area	SB-4	Fill Native	SB-4 (1-1.5) SB-4 (5-5.5)	11/20/2014	1-1½	1.3	< 50	<0.21	ND ND	ND ND	< 0.042	<0.0042	< 0.0042	< 0.0042	<0.0042	<0.0042	<0.0042	<0.0042	ND ND	< 0.067		ND
Outside Southeast Corner of Site	SB-8	Native	SB-8 (0.5-1)	11/21/2014	3-372 1⁄2-1	1.3	<50													< 0.0049	ND	
Outside Near Former Rail Spur Alignment - Southwest	SB-9	Native	SB-9 (0.5-1)	11/21/2014	¥2-1	1.2	< 49													0.005	ND	
Outside Near Former Rail Spur Alianment - South	SB-10	Native	SB-10 (0.5-1)	11/21/2014	1⁄2-1	<0.99	<49													< 0.0049	ND	
Inside South Manufacturing Area	SV-1	Fill/Native Contact	SV-1 (4-4.5)	11/20/2014	4-4½							<0.0042	<0.0042	<0.0042	< 0.0042	< 0.0042	< 0.0042	<0.0042	ND			
Near Former Chemical Storage Area - West	SV-2	Fill	SV-2 (0.5-1)	11/20/2014	1⁄2-1							<0.0038	<0.0038	<0.0038	< 0.0038	< 0.0038	< 0.0038	<0.0038	ND			
Near Former Chemical Storage Area -	SV-3	Fill	SV-3 (1-1.5)	11/20/2014	1-1½							< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	ND			
East		Fill/Native Contact	SV-3 (4-4.5)	11/20/2014	4-41/2							< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	ND			
Inside Northwest Manufacturing Area	SV-5	Fill/Native Contact	SV-5 (4-4.5)	11/20/2014	4-41/2							<0.0039	<0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	<0.0039	ND			
Inside North Manufacturing Area	SV-6	Fill	SV-6 (0.5-1)	11/20/2014	1⁄2-1							<0.0039	<0.0039	<0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	ND			
Inside Northeast Manufacturing Area	SV-7	Fill/Native Contact	SV-7 (5-5.5)	11/20/2014	5-5½							<0.0039	<0.0039	<0.0039	<0.0039	< 0.0039	< 0.0039	< 0.0039	ND			
Inside North Office Space Area	SV-8	Fill	SV-8 (1-1.5)	11/20/2014	1-1½	<1	<50	<0.25	ND	ND	< 0.049	< 0.0049	<0.0049	<0.0049	<0.0049	<0.0049	< 0.0049	<0.0049	ND	<0.066		ND
Residential DTSC-SL1			Cancer Endpoint				100 ²	100 ²	VARIES	VARIES	NE	NE	NE	NE	NE	0.0088	NE	NE	VARIES	NE	VARIES	VARIES
Kesidentiai Di SC-SE			Non-Cancer Endpoint					NE	VARIES	VARIES	NE	NE	NE	19	130	NE	NE	1600	VARIES	NE	VARIES	VARIES
Residential RSL (HQ=1) ³ Carcinogenic Target Risk				NE	NE	NE	VARIES	VARIES	NE	24	0.94	NE	NE	0.059	NE	3.6	VARIES	NE	VARIES	VARIES		
		No	on-Cancer Child H	lazard		NE	NE	NE	VARIES	VARIES	61000	81	4.1	160	1600	70	230	16000	VARIES	18000	VARIES	VARIES

 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

 Environmental Screening Level (ESL), RWOCB, San Francisco Bay Region – December 2013

 Regional Screening Level (RSL) with Hazard Qualient (HQ) = 1.0, USEPA Region 9 – November 2014

 Not detected at or above laboratory reporting limit

 NE

 ND

 Not Detected

 ---- Not Analyzed

Sample Location	Boring ID	Soil Type	Sample ID	Date	Depth (feet)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	OCPs (EPA 8082)
Outside Near Hazardous Materials Storage Area	SB-1	Native	SB-1 (1-1.5)	11/21/2014	1-1½	< 0.049	<0.049	< 0.049	< 0.049	< 0.049	< 0.049	<0.049	ND
Outside Near Former Chemical Storage Area - West	SB-2	Native	SB-2 (0.5-1)	11/21/2014	<i>V</i> 2-1	<0.049	<0.049	< 0.049	<0.049	< 0.049	<0.049	<0.049	ND
Outside Near Former Chemical Storage Area - East	SB-3	Native	SB-3 (0.5-1)	11/21/2014	<i>V</i> ₂ -1	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	ND
Inside Near Center of Manufacturing Area	SB-4	Fill	SB-4 (1-1.5)	11/20/2014	1-1½	<0.049	<0.049	< 0.049	< 0.049	<0.049	<0.049	<0.049	ND
Outside Southeast Corner of Site	SB-8	Native	SB-8 (0.5-1)	11/21/2014	<i>V</i> 2-1	< 0.049	<0.049	< 0.049	< 0.049	< 0.049	< 0.049	<0.049	ND
Outside Near Former Rail Spur Alignment - Southwest	SB-9	Native	SB-9 (0.5-1)	11/21/2014	<i>V</i> 2-1	<0.049	<0.049	< 0.049	<0.049	< 0.049	<0.049	<0.049	ND
Outside Near Former Rail Spur Alignment - South	SB-10	Native	SB-10 (0.5-1)	11/21/2014	<i>V</i> ₂ -1	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	ND
Inside North Office Space Area	SV-8	Fill	SV-8 (1-1.5)	11/20/2014	1-11/2	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	<0.048	< 0.048	ND
	Resident	al RSL ¹ (HQ=1.0)				4.1	0.17	0.17	0.23	0.23	0.24	0.24	VARIES

Table 3. Analytical Results of Soil Samples - PCBs / OCPs (Concentrations in mg/kg)

1 Regional Screening Level (RSL) with Hazard Quotient (HQ) = 1.0, USEPA Region 9 - November 2014

< Not detected at or above laboratory reporting limit

NE Not Established

ND Not Detected

Table 4.	Analytical	Results of	Soil Sam	oles - Asbestos
----------	------------	-------------------	----------	-----------------

(Concentrations in total weight % asbestos)

Sample Location	Boring ID	Soil Type	Sample ID	Date	Depth (feet)	Total Asbestos ¹
Near Former Chemical Storage Area - West	SV-2	Fill	SV-2 (2.5-3.5)	11/20/2014	21/2-31/2	<0.0001
Inside Near Center of Manufacturing Area	SB-4	Fill Native	SB-4 (2-2.5) SB-4 (4-5)	11/20/2014 11/20/2014	2-2½ 4-5	<0.0001 <0.0001
Inside Northeast Manufacturing Area	SB-7	Native	SB-7 (6-7)	11/21/2014	6-7	<0.0001
Inside North Office Space Area	SV-8	Fill	SV-8 (1-1.5)	11/21/2014	1-1½	<0.0001

1 EPA Test Method For the Determination of Asbestos in Bulk Building Materials - TEM method (EPA 600/R-93/116) with CARB 435 prep method

< Not detected at or above laboratory reporting limit

Sample Location	Sample ID	Date	ТРНИ	ТРНо	трнց	ВТЕХ	Fuel Oxygenates	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	1,1 - DCE	1,1-DCA	Other VOCs	svocs
Outside Near Hazardous Materials Storage Area	SB-1	11/21/2014	<52	<100	<50	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND	ND
Outside Near Former Chemical Storage Area - West	SB-2	11/21/2014	<54	<110	<50	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND	ND
Outside Near Former Chemical Storage Area - East	SB-3	11/21/2014	230	800	<50	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	ND	ND
Inside Near Center of Manufacturing Area	SB-4	11/20/2014	<55	<110	<50	ND	ND	<0.50	<0.50	<0.50	<0.50	<0.50	2.1	<0.50	ND	ND
Outside Northwest	SB-5	11/21/2014	100	350	<50	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	1.7	<0.5	ND	ND
Outside North Landscaping	SB-6	11/20/2014	<63	<130	<50	ND	ND	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND	ND
Outside East Parking Lot	SB-7	11/21/2014	<54	<110	<50	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND	ND
Outside Southeast Corner of Site	SB-8	11/21/2014	230	1,000	<50	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	ND	ND
Drinking Water	MCL ¹		100 ²	100 ²	100 ²	VAR	VAR	5	5	6	10	0.5	6	5	VAR	VAR

Table 5. Analytical Results of Ground Water Samples - TPH / VOCs / SVOCs (Concentrations in µg/L)

1 Maximum Contaminant Level (MCL), California Department of Public Health – July 2014

2 MCL not established; value is Environmental Screening Level (ESL) (San Francisco RWQCB, December 2013. Table F-1a)

< Not detected at or above laboratory reporting limit

NE Not Established

ND Not Detected

VAR Various

BOLD Concentration exceeds Drinking Water MCL

Table 6. Analytical Results of Soil Vapor / Outdoor Air Samples

(Concentrations in µg/m3)

Inside South Manufacturing Area SV-1SS below slab 11/24/2014 <3.6	<8.7	
Near Former Chemical		<4.6
Near Former Chemical SV-2SS below slab 11/25/2014 <3.6 <4.2 <4.9 <5.5 <6.7 <13 <5.5 <4.6 28 <14 <5.5 <3.1	<8.6	<4.6
Near Former Chemical SV-3SS below slab 11/24/2014 <3.7 8.1 <5.0 <5.7 8.4 140 <5.7 6.2 470 3.6 <5.7 <4.4	<8.9	<4.8
Storage Area - East Description Description <thdescription< td="" th<=""><td><8.7</td><td><4.6</td></thdescription<>	<8.7	<4.6
Manufacturing Area Sub-Slab Sub-Slab Max 2/2/2/1 Kab	<8.7	<4.6
Manufacturing Area		
Area SV-555 Delow Stad 11/24/2014 <3.7 <4.3 <5.0 <5.6 <6.9 <14 <5.6 <4.7 <27 <14 <5.6 <4.1 <2.6 <4.1 <5.6 <4.1 <5.6 <4.1 <5.6 <5.6 <5.6 <5.6 <5.6 <5.6 <5.6 <5.6	11	<4.7
Manufacturing Area SV-755 Delow siab 11/25/2014 <3.7 <4.3 <5.0 <5.6 <6.9 7.3 <5.6 5.8 30 <14 <5.6 <4.1	9.6	<4.7
Inside North Office Space Area SV-8SS below slab 11/25/2014 <3.7 <4.4 <5.0 <5.7 <7.0 <14 <5.7 <4.8 <28 <14 <5.7 <4.8	<8.9	<4.8
Outside Northwest Corner of Site OA-1 Outdoor Air 11/25/2014 0.47 1.2 0.21 <0.91 <1.1 2.8 <0.91 <0.76 7.9 <2.9 <0.9 <0.6	<1.4	<0.76
Inside South Manufacturing Area SV-1D5 5 11/24/2014 5 <4.4 <5.0 <5.7 <7.0 <14 <5.7 <4.8 53 <14 <5.7 4.4	<8.9	<4.8
Near Former Chemical Storage Area - West SV-2D10 10 11/25/2014 78 130 38 35 <30 <59 35 <20 <120 350 <24 2,500	<38	25
Near Former Chemical SV.3D10 10 11/24/2014 220 210 59 75 <76 <150 77 <52 <300 710 <62 350	< 96	<52
Storage Area - Last	<8.8	< 4.7
Manufacturing Area Soil Vapor No No <th< td=""><td><8.7</td><td><4.6</td></th<>	<8.7	<4.6
Manufacturing Area		
Area - 3v-bb5 5 - 11/24/2014 12 17 9 16 <0.9 45 16 <4.7 120 56 <5.0 14	37	<4.7
Inside Northeast Manufacturing Area SV-7D10 10 11/25/2014 160 38 <29 <33 <40 <80 <33 <28 <160 340 <33 27	<52	<28
Inside North Office Space SV-8D5 5 11/25/2014 80 31 <25 <28 <34 <67 <28 <23 <140 230 <28 200	<44	<23
Ambient Air Cancer Endpoint 0.097 NE	NE	NE
AF=0.05 ³ (Indoor Air / Subslab) 1.94 NE	NE	NE
Residential DTSC-SL ¹ AF=0.001 ⁴ (Indoor Air / Subsurface Soil Gas) 97 NE NE <th< td=""><td>NE</td><td>NE</td></th<>	NE	NE
Ambient Air Non-Cancer Endpoint 3.1 310 NE	NE	NE
AF=0.05 ³ (Indoor Air / Subslab) 62 6200 NE	NE	NE
AF=0.001 ⁴ (Indoor Air / Subsurface Soil Gas) 3100 310000 NE	NE	NE
Indoor Air Carcinogenic Target Risk 0.36 NE 1.1 NE NE NE NE NE NE NE NE NE 0.12 NE	NE	NE
AF=0.05 ³ (Indoor Air / Subslab) 7.2 NE 22 NE NE NE NE NE NE 2.4 NE AF=0.001 ⁴ (Indoor Air / Subsurface Soll Gas) 360 NE 1100 NE NE NE NE NE NE NE 120 NE	NE	NE
Residential RSL ² AF=0.001 ⁴ (Indoor Air / Subsurface Soil Gas) 360 NE 1100 NE NE NE NE NE NE NE NE 120 NE Indoor Air Non-Cancer Hazard 31 5200 1000 7.3 NE 5200 NE 3100 3,200 730 100 630	NE 31000	NE
AF=0.05 ³ (Indoor Air / Subslab) 620 10400 2000 146 NE 104000 NE 62000 14600 2000 12600		NE
AF=0.001 ⁴ (Indoor Air / Subsurface Soli Gas) 31000 520000 1000000 7300 NE 5200000 3100000 520000 1000000 7300 NE 3100000 3200000 730000 63000		NE

1

2

DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015 Reaional Screening Level (RSL), USEPA Reaion 9 - May 2014 Calculated sub-slab screening level using an Attenuation Factor (AF) = 0.05 for existing buildings (DTSC, 2011) 3

Calculated sub-stab screening level using an Attenuation Factor (AF) = 0.05 for existing buildings (DTSC, 2011) Calculated "contaminant source" screening level using an Attenuation Factor (AF) = 0.001 for future buildings (DTSC, 2011) Not detected at or above laboratory reporting limit Not Applicable Not Established Sub-stab concentrations exceeds calculated residential RSL using an AF = 0.05 Outdoor et al. 4

<

NE

BOLD Outdoor air concentrations exceeds residential indoor air RSL Soil vapor concentrations exceeds calculated residential RSL using an AF = 0.001

Table 6.	Analytical Results of Soil Vapor / Outdoor Air Samples - continued
	(Concentrations in µg/m ³)

Sample Location	Sample I D	Depth (feet from existing grade)	Sample Type	Date	Hexane	Isopropanol	m,p-Xylene	o-xylene	Tetrahydrofuran	Trichlorofluoromethane	MTBE	1,1,1-TCA	Ethanol	Carbon Dioxide	Oxygen
Inside South Manufacturing Area	SV-1SS	below slab		11/24/2014	<4.0	12	<4.9	<4.9	<3.3	<6.3	<4.1	<6.2	<8.5	4.1	16
Near Former Chemical Storage Area - West	SV-2SS	below slab		11/25/2014	<3.9	18	<4.9	<4.9	3.4	<6.3	<4.0	<6.1	8.6	3.2	16
Near Former Chemical Storage Area - East	SV-3SS	below slab		11/24/2014	<4.1	240	6.8	<5.0	130	<6.5	5.7	<6.3	38	0.35	20
Inside Near Center of Manufacturing Area	SV-4SS	below slab		11/24/2014	<4.0	17	<4.9	<4.9	<3.3	<6.4	<4.1	<6.2	74	3.1	17
Inside Northwest Manufacturing Area	SV-5SS	below slab	Sub-Slab	11/25/2014	<4.0	36	<4.0	<4.9	<3.3	<6.3	<4.1	<6.2	<8.5	7	13
Inside North Manufacturing	SV-6SS	below slab		11/24/2014	<4.0	18	<4.9	<5.0	< 3.4	<6.5	<4.1	12	<8.7	2.7	18
Area Inside Northeast Manufacturing Area	SV-7SS	below slab		11/25/2014	<4.0	82	<5.0	<5.0	17	<6.5	<4.1	31	590	2.4	18
Inside North Office Space Area	SV-8SS	below slab		11/25/2014	<4.1	45	<5.0	<5.0	<3.4	<6.5	<4.2	<6.3	48	0.77	20
Outside Northwest Corner of Site	OA-1		Outdoor Air	11/25/2014	<0.65	4.1	0.65	0.26	<2.7	1.6	<0.67	<0.2	7.1		
Inside South Manufacturing Area	SV-1D5	5		11/24/2014	<4.1	<11	8.4	<5.0	26	<6.5	<4.2	<6.3	13	12	8.1
Near Former Chemical Storage Area - West	SV-2D10	10		11/25/2014	28	54	170	47	29	<28	<18	<27	200	0.29	17
Near Former Chemical Storage Area - East	SV-3D10	10		11/24/2014	< 44	130	260	77	88	<71	<45	<69	<95	3.8	12
Inside Near Center of Manufacturing Area	SV-4D5	5		11/24/2014	<4.0	<11	30	9.9	39	<6.5	<4.1	16	<8.7	12	4.2
Inside Northwest Manufacturing Area	SV-5D5	5	Soil Vapor	11/25/2014	<4.0	<11	37	11	43	<6.4	<4.1	<6.2	<8.6	8.6	12
Inside North Manufacturing Area	SV-6D5	5		11/24/2014	<4.1	<11	41	14	74	<6.5	<4.2	46	<8.7	9.2	9
Inside Northeast Manufacturing Area	SV-7D10	10		11/25/2014	31	<66	<29	<29	51	<38	<24	<37	<51	0.68	16
Inside North Office Space Area	SV-8D5	5		11/25/2014	<20	<56	<25	<25	35	<32	<20	<31	<43	0.97	16
Alea		Ambient Air C	ancer Endpoint		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	,	AF=0.05 ³ (Indo	or Air / Subslab)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residential DTSC-SL ¹	AF=0.0	001 ³ (Indoor Air	/ Subsurface S	oil Gas)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residential DTSC-SL	A	mbient Air Non	-Cancer Endpoir	nt	NE	NE	NE	NE	NE	NE	NE	1,000	NE	NE	NE
	,	AF=0.05 ³ (Indo	or Air / Subslab)	NE	NE	NE	NE	NE	NE	NE	20000	NE	NE	NE
	AF=0.0	01 ³ (Indoor Air	/ Subsurface S	oil Gas)	NE	NE	NE	NE	NE	NE	NE	1000000	NE	NE	NE
	In	door Air Carcine	ogenic Target Ri	isk	NE	NE	NE	NE	NE	NE	11	NE	NE	NE	NE
	1	AF=0.05 ³ (Indo	or Air / Subslab)	NE	NE	NE	NE	NE	NE	220	NE	NE	NE	NE
Desidential DOI 2	AF=0.0	101 ³ (Indoor Air	/ Subsurface S	oil Gas)	NE	NE	NE	NE	NE	NE	11000	NE	NE	NE	NE
Residential RSL ²		Indoor Air Non	Cancer Hazard		730	210	100	100	2100	NE	3100	5200	NE	NE	NE
	,	AF=0.05 ³ (Indo	or Air / Subslab)	14600	4200	2000	2000	42000	NE	62000	104000	NE	NE	NE
	AF=0.0	101 ³ (Indoor Air	/ Subsurface S	oil Gas)	730000	210000	100000	100000	2100000	NE	3100000	5200000	NE	NE	NE

 1
 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

 2
 Regional Screening Level (RSL), USEPA Region 9 - May 2014

 3
 Calculated sub-slab screening level using an Attenuation Factor (AF) = 0.05 for existing buildings (DTSC, 2011)

 4
 Calculated "contaminant source" screening level using an Attenuation Factor (AF) = 0.001 for future buildings (DTSC, 2011)

 <</td>
 Not detected at or above laboratory reporting limit

 Not Established
 Not Established

< ----NE

APPENDIX C: BORING LOGS

Soil Vapor Well SV-2	Soil	Va	oor	Wel	I SV	/-2/
----------------------	------	----	-----	-----	------	------

		CORNERSTONE EARTH GROUP					
E STA	ARTED	12/9/15 DATE COMPLETED _ 12/9/15					BORING DEPTH 9.5 ft.
		ACTOR					
		D_Direct Push		ND WATER			
		<u> </u>		TIME OF D		Not Encounte	ered
				END OF DF	ILLING N	lot Encounte	ered
	DEPTH (ft) SYMBOL	This log is a part of a report by Cornerstone Earth Group, and should not be used a document. This description applies only to the location of the exploration at the time Subsurface conditions may differ at other locations and may change at this location description presented is a simplification of actual conditions encountered. Transition types may be gradual.	s a stand-alone : of drilling. : with time. The is between soil	Sample Type Percent Recovery (%)	OVM Reading (ppm)	Odors or Discoloration	Well Details
-	0.0						
_		Sandy Lean Clay with Gravel (CL) [Fill] stiff, moist, reddish brown with light brown m subangular gravel			0.1		
_					0.2		
_	2.5			75	0.3	none	 2.25" diameter borehole to 5.25'
		X			0.3		
-		Fat Clay (CH)		-			 Hydrated Bentoni Seal Slurry 0-7.8'
_		very stiff, moist, dark brown, moderate to hig plasticity	gh		0.1		
	5.0-	Hand augered from 5.0 to 9.5'					
-							 ✓ 1.75" diameter borehole from 5.0 9.5'
	7.5	Sandy Lean Clay (CL)					
_		stiff, moist, light brown with reddish brown m fine to medium sand	nottles,				Hydrated Granula Bentonite 7.8-8.2 - Dry Bentonite Sea 8.25-8.7
-							Filter Sand 8.7-9. with Stainless Ste Dedicated Vapor
		Bottom of Boring at 9.5 feet.					@ 9.0'
- 1	10.0-						

CORNERSTONE GE WELL LOG - CORNERSTONE 0812.GDT - 3/10/16 08:03 - PADRAFTINGIGINT FILES/166-14-8 150 JEFFERSON GE SV.GPJ

	Soil	Vapor	Well	SV-34
--	------	-------	------	-------

		COR EAR	ТН	GRO	OUP						
E	D <u>1</u> 2	2/9/15	DATE	COMPLET	TED <u>12/9/15</u>	GROU	IND ELEVAT			BORING	DEPTH <u>9.5 ft.</u>
								R ft			
							IND WATER	-			
	SDK			DEATOR							
в											
	SYMBOL	document. This descr Subsurface conditions description presented types may be gradual		o the location of locations and m f actual condition	and should not be used the exploration at the tir lay change at this locati ns encountered. Transit	ne of drilling. on with time. The ions between soil	Sample Type Percent Recovery (%)	OVM Reading (ppm)	Odors or Discoloration		Well Details
)+	P 6 4	12 inches			ncrete over 2	2 inches					
		sand						0.1			— ¼" dia. High Puri Stainless Steel Tubing with Swagelok Cap ab
		Sandy Lea stiff, moist subangula	n Clay wit , reddish b r gravel	h Gravel rown with	(CL) [Fill] h light brown	mottles,		0.1			ground
							60	0.1	none		 2.25" diameter borehole to 8.5'
		Fat Clay (C	(田)					0.5			 ─ Hydrated Benton Seal Slurry 0-7.6
		very stiff, r moderate f	noist, dark	brown, tr sticity	race fine san	d,	_ 100	0.1	none		
-											
		Sandy Lea stiff, moist mottles, fir	, light brow	n with lig	ht reddish br						Hydrated Granula Bentonite 7.6-8.2
		Hand auge									 8.2-8.6' Filter Sand 8.6-9. with Stainless Sterned Dedicated Vapor @ 9.0' 1.75" diameter
			Bottom	of Boring	at 9.5 feet.						borehole from 8.5 9.5'
'											
		Hand auge			at 9.5 feet.						

Soil Vapor Well SV-7A	Soil	Vapor	Well	SV-74
-----------------------	------	-------	------	-------

			CORNERSTONE EARTH GROUP	PROJE		R <u>166-14-</u>	8	
ATE S	TARTE	D_12	2/9/15 DATE COMPLETED 12/9/15					BORING DEPTH 9.5 ft.
RILLIN	IG MET	HOD	Direct Push	GROUI	ND WATER	LEVELS:		
								ered
ERMIT	NUMBI				END OF DR	LILLING N	lot Encounte	red
ELEVATION (ft)	DEPTH (ft)	SYMBOL	This log is a part of a report by Cornerstone Earth Group, and should not be used document. This description applies only to the location of the exploration at the tim Subsurface conditions may differ at other locations and may change at this locatio description presented is a simplification of actual conditions encountered. Transition types may be gradual.	as a stand-alone e of drilling. n with time. The ons between soil	Sample Type Percent Recovery (%)	OVM Reading (ppm)	Odors or Discoloration	Well Details
	- 0.0-	0 6 9 9 4	7 inches Portland cement concrete over 2 i	nches				
			sand Sandy Lean Clay with Gravel (CL) [Fill] stiff, moist, reddish brown with light brown r subangular gravel			0.1		
	- 2.5-				95	0.2		a 2.25" diameter
					95	0.6	none	 2.25" diameter borehole to 8.5'
	- 5.0-		Fat Clay (CH) very stiff, moist, dark brown, trace fine sand moderate to high plasticity		-	0.6		Hydrated Bentonit Seal Slurry 0-7.6'
					100	0	none	
	- 7.5-		Sandy Lean Clay (CL) stiff, moist, light brown with light reddish bro mottles, fine to medium sand					 Hydrated Granular Bentonite 7.6-8.2' Dry Bentonite Sea 8.2-8.6'
			Hand augered from 8.5 to 9.5' Bottom of Boring at 9.5 feet.					Filter Sand 8.6-9.5 with Stainless Stee Dedicated Vapor 1 @ 9.0 1.75" diameter
	-10.0-		Bolloni of Boiling at 9.5 leet.					borehole from 8.5' 9.5'

CORNERSTONE GE WELL LOG - CORNERSTONE 0812.GDT - 3/10/16 08:03 - P.\DRAFTING\GINT FILES\166-14-8 150 JEFFERSON GE SV.GPJ

Soil Vapor	Well	SV-9
------------	------	------

DATE ST DRILLIN DRILLIN LOGGEE	G CON G MET	ED <u>1</u> NTRA THOD SDK	2/9/15 CTOR _ Direct Push	DATE COMPLETED _12/9/15	PROJE PROJE GROU BORIN GROU Z AT	CT NUMBE CT LOCAT ND ELEVAT G DIAMETE ND WATER TIME OF D END OF DF	R <u>166-14</u> ION <u>Menk</u> ION ICN ICN LEVELS: RILLING _	-8 o Park, CA B Not Encounter	
ELEVATION (ft)	DEPTH (ft)	SYMBOL	Subsurface conditions ma description presented is a types may be gradual.	y differ at other locations and may change at this loca simplification of actual conditions encountered. Trans	ation with time. The	Sample Type Percent Recovery (%)	OVM Reading (ppm)	Odors or Discoloration	Well Details
CORNERSTONE GE WELL LOG - CORNERSTONE 0812.GDT - 3/10/16 08:03 - P:/DRAFTING/GINT FILES/166-14-8 150 JEFFERSON GE SV.GPJ			Hand augere	Sand with Gravel (SW) [Fill] brown, fine to coarse angula	ar graver	50	5.6 6 5.8 5.4	none	 ½" dia. High Purity Stainless Steel Tubing with Swagelok Cap above ground Hydrated Bentonite Seal Slurry 0-3.8' 2.25" diameter borehole to 4' Hydrated Granular Bentonite 3.8-4.2' Dry Bentonite Seal 4.2-4.6' Filter Sand 4.6-5.5' with Stainless Steel Dedicated Vapor Tip @ 5.0' 1.75" diameter borehole from 4.0' to 5.5'
DRNERSTONE GE WELL LOG - COR	10.0-	-							

Soil Vapo	r Wel	SV-10
-----------	-------	--------------

	C		CORNERSTONE EARTH GROUP					
DATE ST	ARTE	D 1	2/9/15 DATE COMPLETED 12/9/15	GROU	ND ELEVAT		I	BORING DEPTH 5.5 ft.
RILLIN	G CON	ITRA	CTOR	BORIN	G DIAMETE	R ft		
RILLIN	g met	HOD	Direct Push	GROUI	ND WATER	LEVELS:		
								ered
PERMIT	NUMB	ER _		¥AT	END OF DF	RILLING _	lot Encounte	ered
ELEVATION (ft)	DEPTH (ft)	SYMBOL	This log is a part of a report by Cornerstone Earth Group, and should not be used document. This description applies only to the location of the exploration at the tir Subsurface conditions may differ at other locations and may change at this location description presented is a simplification of actual conditions encountered. Transit types may be gradual.	on with time. The	Sample Type Percent Recovery (%)	OVM Reading (ppm)	Odors or Discoloration	Well Details
-	0.0-		Sandy Lean Clay (CL) [Fill] medium stiff, moist, light brown, some root Fat Clay (CH) stiff, moist, dark brown, moderate to high p			10.8		 ¼" dia. High Purity Stainless Steel Tubing with Swagelok Cap abo ground
-	2.5-		Sandy Lean Clay (CL) stiff, moist, light brown with yellow and red mottles, fine sand		- 90	7.5	none	 Hydrated Bentonit Seal Slurry 0-3.75 2.25" diameter borehole to 4'
-	- 5.0-		Hand augered from 5.0 to 5.5'			3.8 0.8		Hydrated Granula Bentonite 3.75-4. Dry Bentonite Sea 4.2-4.5' Filter Sand 4.5-5. with Stainless Ste Dedicated Vapor @ 5.0' - 1.75'' diameter
-			Bottom of Boring at 5.5 feet.					borehole from 5.0 5.5'
-	7.5-							
-								

APPENDIX D: ANALYTICAL DATA SHEETS AND CHAIN OF CUSTODY DOCUMENTATION

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

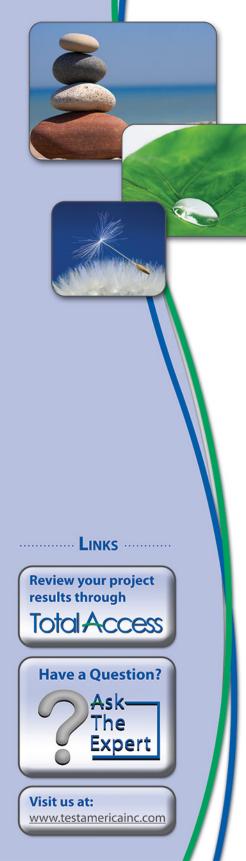
TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-69116-1 Client Project/Site: 150 Jefferson Drive

For:

Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, California 94085

Attn: Kurt Soenen


Atanif Sal

Authorized for release by: 12/16/2015 5:04:28 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	18
	21
QC Association Summary	30
Lab Chronicle	33
Certification Summary	36
Method Summary	37
Sample Summary	38
Chain of Custody	39
Receipt Checklists	41

Qualifiers

GC Semi VOA

OC Senin V	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
*	LCS or LCSD is outside acceptance limits.
Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	-
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	- 2
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-69116-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-69116-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/9/2015 5:05 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

Receipt Exceptions

Sample ID EB-1 was received with 1L amber unpreserved half full.

GC Semi VOA

Method(s) 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: (LCS 720-194272/2-A) and (LCSD 720-194272/3-A).

Method(s) 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: EB-1 (720-69116-11) and (MB 720-194272/1-A).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: EPA 8081A: The sample is less than 800 mL.

Method(s) 3510C: A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: EPA 8082: The sample is less than 800 mL.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Cornerstone Earth Group Project/Site: 150 Jefferson Drive

Client Sample ID: SB-1	5 (0-0.5')			Lab Sample ID:	720-69116-1
No Detections.					
Client Sample ID: SB-1	5 (2-2.5')			Lab Sample ID:	720-69116-2
No Detections.					
Client Sample ID: SB-14	4 (0-0.5')			Lab Sample ID:	720-69116-4
No Detections.					
Client Sample ID: SB-1	4 (2-2.5')			Lab Sample ID:	720-69116-5
No Detections.					
Client Sample ID: SB-12	2 (0-0.5')			Lab Sample ID:	720-69116-7
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	9.9	1.8	mg/Kg	46010B	Total/NA
Client Sample ID: SB-12		Lab Sample ID:	720-69116-8		
No Detections.					
Client Sample ID: FD-1	(2-2.5')			Lab Sample ID:	720-69116-9
No Detections.					
Client Sample ID: EB-1				Lab Sample ID: 7	20-69116-11
No Detections.					
Client Sample ID: SB-1	1 (0-0.5')			Lab Sample ID: 7	20-69116-12
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	7.4	1.3	mg/Kg	<u> </u>	Total/NA
Client Sample ID: SB-1	1 (2-2.5')			Lab Sample ID: 7	20-69116-13
No Detections.					
Client Sample ID: SB-1	3 (0-0.5')			Lab Sample ID: 7	20-69116-15
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	8.8	1.5	mg/Kg	46010B	Total/NA
Client Sample ID: SB-13	3 (2-2.5')			Lab Sample ID: 7	20-69116-16

No Detections.

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-69116-1 Matrix: Solid

5

6

Date Collected: 12/09/15 08:22 Date Received: 12/09/15 17:05

Client Sample ID: SB-15 (0-0.5')

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
PCB-1221	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
PCB-1232	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
PCB-1242	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
PCB-1248	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
PCB-1254	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
PCB-1260	ND	49		ug/Kg		12/11/15 10:16	12/12/15 16:47	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82	45 - 132				12/11/15 10:16	12/12/15 16:47	1
DCB Decachlorobiphenyl	68	42 - 146				12/11/15 10:16	12/12/15 16:47	1

Date Collected: 12/09/15 08:24 Date Received: 12/09/15 17:05

Client Sample ID: SB-15 (2-2.5')

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
PCB-1221	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
PCB-1232	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
PCB-1242	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
PCB-1248	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
PCB-1254	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
PCB-1260	ND		48		ug/Kg		12/11/15 10:16	12/12/15 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82		45 - 132				12/11/15 10:16	12/12/15 17:03	1
DCB Decachlorobiphenyl	74		42 - 146				12/11/15 10:16	12/12/15 17:03	1

Lab Sample ID: 720-69116-2 Matrix: Solid 5 6

Client Sample ID: SB-14 (0-0.5')

720-69116-4 Lab Sa d

Date Collected: 12/09/15 08:42 Date Received: 12/09/15 17:05

imple	ID:	/20-69	116-4
		Matrix:	Soli

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
PCB-1221	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
PCB-1232	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
PCB-1242	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
PCB-1248	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
PCB-1254	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
PCB-1260	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82		45 - 132				12/11/15 10:16	12/12/15 17:20	1
DCB Decachlorobiphenyl	76		42 - 146				12/11/15 10:16	12/12/15 17:20	1

Client Sample ID: SB-14 (2-2.5') Date Collected: 12/09/15 08:45 Date Received: 12/09/15 17:05

Lab Sample ID: 720-69116-5 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
PCB-1221	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
PCB-1232	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
PCB-1242	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
PCB-1248	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
PCB-1254	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
PCB-1260	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	83		45 - 132				12/11/15 10:16	12/12/15 17:36	1
DCB Decachlorobiphenyl	78		42 - 146				12/11/15 10:16	12/12/15 17:36	1

Lab Sample ID: 720-69116-7 Matrix: Solid

Client Sample ID: SB-12 (0-0.5') Date Collected: 12/09/15 08:58 Date Received: 12/09/15 17:05

Analyte	Result	Qualifier	RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac	5
Aldrin	ND		2.0	u;	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Dieldrin	ND		2.0	uç	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	6
Endrin aldehyde	ND		2.0	uç	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Endrin	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Endrin ketone	ND		2.0	uç	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Heptachlor	ND		2.0	uç	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	8
Heptachlor epoxide	ND		2.0		ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
4,4'-DDT	ND		2.0	uç	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	Q
4,4'-DDE	ND		2.0	-	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
4,4'-DDD	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Endosulfan I	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
ndosulfan II	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
lpha-BHC	ND		2.0		ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
eta-BHC	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
amma-BHC (Lindane)	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
elta-BHC	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Endosulfan sulfate	ND		2.0	-	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Methoxychlor	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Toxaphene	ND		39		ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Chlordane (technical)	ND		39	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
lpha-Chlordane	ND		2.0	uŗ	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
gamma-Chlordane	ND		2.0	uç	ıg/Kg		12/11/15 10:40	12/14/15 18:01	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	95		57 - 122				12/11/15 10:40	12/14/15 18:01	1	
DCB Decachlorobiphenyl	102		21 - 136				12/11/15 10:40	12/14/15 18:01	1	

Method: 8082 - Polychlorinate	d Biphenyl	s (PCBs) b	y Gas Chron	atogra	phy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
PCB-1221	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
PCB-1232	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
PCB-1242	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
PCB-1248	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
PCB-1254	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
PCB-1260	ND		49		ug/Kg		12/11/15 10:16	12/12/15 17:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		45 - 132				12/11/15 10:16	12/12/15 17:53	1
DCB Decachlorobiphenyl	83		42 - 146				12/11/15 10:16	12/12/15 17:53	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	9.9		1.8		mg/Kg		12/11/15 16:48	12/14/15 21:44	4

Client: Cornerstone Earth Group Project/Site: 150 Jefferson Drive

Client Sample ID: SB-12 (2-2.5')

Lab Sample ID: 720-69116-8 Matrix: Solid

Date Collected: 12/09/15 08:59 Date Received: 12/09/15 17:05

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Dieldrin	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Endrin aldehyde	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Endrin	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Endrin ketone	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Heptachlor	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Heptachlor epoxide	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
4,4'-DDT	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
4,4'-DDE	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
4,4'-DDD	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Endosulfan I	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Endosulfan II	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
alpha-BHC	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
beta-BHC	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
gamma-BHC (Lindane)	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
delta-BHC	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Endosulfan sulfate	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Methoxychlor	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Toxaphene	ND	39	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Chlordane (technical)	ND	39	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
alpha-Chlordane	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
gamma-Chlordane	ND	1.9	ug/Kg		12/11/15 10:40	12/15/15 08:00	1	
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	100	57 - 122			12/11/15 10:40	12/15/15 08:00	1	
DCB Decachlorobiphenyl	129	21 - 136			12/11/15 10:40	12/15/15 08:00	1	

Method: 8082 - Po	lychlorinatod B	inhonyle	(DCRe) h	Gae	Chromatography
Welliou. 0002 - PO	iveniorinateu D			Gas	Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
PCB-1221	ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
PCB-1232	ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
PCB-1242	ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
PCB-1248	ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
PCB-1254	ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
PCB-1260	ND	48	ug/Kg		12/11/15 10:16	12/12/15 18:10	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	81	45 - 132			12/11/15 10:16	12/12/15 18:10	1
DCB Decachlorobiphenyl	86	42 - 146			12/11/15 10:16	12/12/15 18:10	1

Client Sample ID: FD-1 (2-2.5')

Lab Sample ID: 720-69116-9 Matrix: Solid

Date Collected: 12/09/15 08:59 Date Received: 12/09/15 17:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Dieldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Endrin aldehyde	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Endrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Endrin ketone	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	-
Heptachlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Heptachlor epoxide	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
4,4'-DDT	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
4,4'-DDE	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
4,4'-DDD	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Endosulfan I	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Endosulfan II	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
alpha-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
beta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
delta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Endosulfan sulfate	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Methoxychlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	Ē
Toxaphene	ND		39		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Chlordane (technical)	ND		39		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
alpha-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
gamma-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:17	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	95		57 - 122				12/11/15 10:40	12/15/15 08:17	1	
DCB Decachlorobiphenyl	134		21 - 136				12/11/15 10:40	12/15/15 08:17	1	

				· · ·
Method: 8082 - Pol	vchlorinated Bi	nhenvis (F	PCBs) by	Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
PCB-1221	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
PCB-1232	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
PCB-1242	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
PCB-1248	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
PCB-1254	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
PCB-1260	ND	49	ug/Kg		12/11/15 10:16	12/12/15 18:26	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	77	45 - 132			12/11/15 10:16	12/12/15 18:26	1
DCB Decachlorobiphenyl	81	42 - 146			12/11/15 10:16	12/12/15 18:26	1

Lab Sample ID: 720-69116-11 Matrix: Water

Date Collected: 12/09/15 09:10 Date Received: 12/09/15 17:05

Client Sample ID: EB-1

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aldrin	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Dieldrin	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Endrin aldehyde	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Endrin	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Endrin ketone	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Heptachlor	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Heptachlor epoxide	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
4,4'-DDT	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
4,4'-DDE	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
4,4'-DDD	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Endosulfan I	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Endosulfan II	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
alpha-BHC	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
beta-BHC	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
gamma-BHC (Lindane)	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
delta-BHC	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Endosulfan sulfate	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Methoxychlor	ND *	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Toxaphene	ND	1.9	ug/L	12/16/15 09:44	12/16/15 15:14	1
Chlordane (technical)	ND	1.9	ug/L	12/16/15 09:44	12/16/15 15:14	1
alpha-Chlordane	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
gamma-Chlordane	ND	0.11	ug/L	12/16/15 09:44	12/16/15 15:14	1
Surrogate	%Recovery Qualifier	l imits		Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	77		36 - 112	12/16/15 09:44	12/16/15 15:14	1
DCB Decachlorobiphenyl	97		14 - 126	12/16/15 09:44	12/16/15 15:14	1

Method: 8082 - Pol	vchlorinated Bi	nhonyle	(DCBe) h	v Gae	Chromatograp	hy
Welliou. 0002 - PU	ycillorillateu Di	phenyis (y Gas	Chilomatograp	'lly

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
PCB-1221	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
PCB-1232	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
PCB-1242	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
PCB-1248	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
PCB-1254	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
PCB-1260	ND	0.94	ug/L		12/16/15 09:41	12/16/15 14:05	1
Surrogate	%Recovery Qualifie	r Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70	19 - 98			12/16/15 09:41	12/16/15 14:05	1
DCB Decachlorobiphenyl	88	10 - 122			12/16/15 09:41	12/16/15 14:05	1

Client Sample ID: SB-11 (0-0.5')

Lab Sample ID: 720-69116-12 Matrix: Solid

Date Collected: 12/09/15 09:23 Date Received: 12/09/15 17:05

Method: 8081A - Organochlori Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Dieldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Endrin aldehyde	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	E
Endrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Endrin ketone	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	5
Heptachlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Heptachlor epoxide	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	2
4,4'-DDT	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
4,4'-DDE	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
4,4'-DDD	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Endosulfan I	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Endosulfan II	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
alpha-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
peta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
delta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Endosulfan sulfate	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Methoxychlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Toxaphene	ND		40		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Chlordane (technical)	ND		40		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
alpha-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
gamma-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 08:34	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	105		57 - 122				12/11/15 10:40	12/15/15 08:34	1	
DCB Decachlorobiphenyl	106		21 - 136				12/11/15 10:40	12/15/15 08:34	1	
Method: 6010B - Metals (ICP)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Lead	7.4		1.3		mg/Kg		12/11/15 16:48	12/14/15 21:49	4	

Lab Sample ID: 720-69116-13 Matrix: Solid

Client Sample ID: SB-11 (2-2.5') Date Collected: 12/09/15 09:25 Date Received: 12/09/15 17:05

Method: 8081A - Organoc						_	_ .			E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		1.9		ug/Kg		12/11/15 10:40		1	
Dieldrin	ND		1.9		ug/Kg		12/11/15 10:40		1	
Endrin aldehyde	ND		1.9		ug/Kg			12/15/15 08:51	1	
Endrin	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Endrin ketone	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Heptachlor	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Heptachlor epoxide	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
4,4'-DDT	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
4,4'-DDE	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
4,4'-DDD	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Endosulfan I	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Endosulfan II	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
alpha-BHC	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
beta-BHC	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
gamma-BHC (Lindane)	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
delta-BHC	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Endosulfan sulfate	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Methoxychlor	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Toxaphene	ND		39		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Chlordane (technical)	ND		39		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
alpha-Chlordane	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
gamma-Chlordane	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 08:51	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	103		57 - 122				12/11/15 10:40	12/15/15 08:51	1	
DCB Decachlorobiphenyl	119		21 - 136				12/11/15 10:40	12/15/15 08:51	1	

Lab Sample ID: 720-69116-15 Matrix: Solid

Client Sample ID: SB-13 (0-0.5') Date Collected: 12/09/15 10:00 Date Received: 12/09/15 17:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Dieldrin	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Endrin aldehyde	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Endrin	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Endrin ketone	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Heptachlor	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Heptachlor epoxide	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
4,4'-DDT	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
4,4'-DDE	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
4,4'-DDD	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Endosulfan I	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Endosulfan II	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
alpha-BHC	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
beta-BHC	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
gamma-BHC (Lindane)	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
delta-BHC	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Endosulfan sulfate	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Methoxychlor	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Toxaphene	ND		39		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Chlordane (technical)	ND		39		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
alpha-Chlordane	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
gamma-Chlordane	ND		1.9		ug/Kg		12/11/15 10:40	12/15/15 09:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		57 - 122				12/11/15 10:40	12/15/15 09:08	1
DCB Decachlorobiphenyl	98		21 - 136				12/11/15 10:40	12/15/15 09:08	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	8.8		1.5		mg/Kg		12/11/15 16:48	12/14/15 21:54	4

12/16/2015

Lab Sample ID: 720-69116-16 Matrix: Solid

Client Sample ID: SB-13 (2-2.5') Date Collected: 12/09/15 10:02 Date Received: 12/09/15 17:05

Method: 8081A - Organoo Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Dieldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	6
Endrin aldehyde	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Endrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Endrin ketone	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Heptachlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	8
Heptachlor epoxide	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
4,4'-DDT	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
4,4'-DDE	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
4,4'-DDD	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Endosulfan I	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Endosulfan II	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
alpha-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
beta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
delta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Endosulfan sulfate	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Methoxychlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Toxaphene	ND		39		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Chlordane (technical)	ND		39		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
alpha-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
gamma-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 09:24	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	84	p	57 - 122				12/11/15 10:40	12/15/15 09:24	1	
DCB Decachlorobiphenyl	114		21 - 136				12/11/15 10:40	12/15/15 09:24	1	

Prop Type: Total/NA

Prep Type: Total/NA

5

7

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid				Prep Type: Total/NA
-			Perc	ent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(57-122)	(21-136)	
720-69089-A-5-E MS	Matrix Spike	110	135	
720-69089-A-5-F MSD	Matrix Spike Duplicate	98	130	
720-69116-7	SB-12 (0-0.5')	95	102	
720-69116-9	FD-1 (2-2.5')	95	134	
720-69116-13	SB-11 (2-2.5')	103	119	
720-69116-15	SB-13 (0-0.5')	73	98	
720-69116-16	SB-13 (2-2.5')	84 p	114	
LCS 720-194011/2-A	Lab Control Sample	115	104	
LCS 720-194011/2-A	Lab Control Sample	110	121	
MB 720-194011/1-A	Method Blank	105	104	
Surrogate Legend				
TCX = Tetrachloro-m-x	ylene			
DCB = DCB Decachlor	obiphenyl			

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid

			Per	cent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB1	
Lab Sample ID	Client Sample ID	(57-122)	(21-136)	
720-69116-12	SB-11 (0-0.5')	105	106	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid				Prep Type: Total/NA
Γ			Perc	ent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB2	
Lab Sample ID	Client Sample ID	(57-122)	(21-136)	
720-69116-8	SB-12 (2-2.5')	100	129	
Surrogate Legend	I			
TCX = Tetrachloro-	m-xylene			

DCB = DCB Decachlorobiphenyl

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid		•		Prep Type: Total/I
			Percer	ent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(57-122)	(21-136)	
MB 720-194011/1-A	Method Blank	106	121	
Surrogate Legend				
TCX = Tetrachloro-m-	xylene			

DCB = DCB Decachlorobiphenyl

Prep Type: Total/NA

Prep Type: Total/NA

7

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Water				Prep Type: Total/NA
_			Perce	nt Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(36-112)	(14-126)	
720-69116-11	EB-1	77	97	
MB 720-194275/1-A	Method Blank	87	82	
Surrogate Legend				
TCX = Tetrachloro-m-	xylene			

DCB = DCB Decachlorobiphenyl

Method: 8081A - Organochlorine Pesticides (GC) Matrix: Water

			Pe	cent Surrogate Recovery (Acceptance Limits)
		TCX1	DCB2	
Lab Sample ID	Client Sample ID	(36-112)	(14-126)	
LCS 720-194275/2-A	Lab Control Sample	99	89	
LCSD 720-194275/3-A	Lab Control Sample Dup	93	101	
Surrogate Legend				
TCX = Tetrachloro-m-x	ylene			
DCB = DCB Decachlor	obiphenyl			

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

			Percer	t Surrogate Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(45-132)	(42-146)	
720-69061-A-1-F MS	Matrix Spike	88	90	
720-69061-A-1-G MSD	Matrix Spike Duplicate	78	82	
720-69116-1	SB-15 (0-0.5')	82	68	
720-69116-2	SB-15 (2-2.5')	82	74	
720-69116-4	SB-14 (0-0.5')	82	76	
720-69116-5	SB-14 (2-2.5')	83	78	
720-69116-7	SB-12 (0-0.5')	85	83	
720-69116-8	SB-12 (2-2.5')	81	86	
720-69116-9	FD-1 (2-2.5')	77	81	
LCS 720-194010/2-A	Lab Control Sample	96	96	
MB 720-194010/1-A	Method Blank	98	98	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Water

Prep Type: Total/NA

Γ			Pe
		TCX1	DCB1
Lab Sample ID	Client Sample ID	(19-98)	(10-122)
720-69116-11	EB-1	70	88
LCS 720-194272/2-A	Lab Control Sample	82	85

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued) Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		TCX1	DCB1				
Lab Sample ID	Client Sample ID	(19-98)	(10-122)				
LCSD 720-194272/3-A	Lab Control Sample Dup	82	85				
MB 720-194272/1-A	Method Blank	86	80				
Surrogate Legend							

urrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Prepared

12/11/15 10:40 12/14/15 12:42

12/11/15 10:40 12/14/15 12:42

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA Prep Batch: 194011

Dil Fac

1

1

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 194011

8

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 720-194011/1-A
Matrix: Solid

Analysis	Batch:	194086

Analysis Datch. 194000	МВ	мв						Fiep Datch.	104011
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	1
Dieldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	1
Endrin aldehyde	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	1
Endrin	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	1
Endrin ketone	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	1
Heptachlor	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	1
Heptachlor epoxide	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
4,4'-DDT	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
4,4'-DDE	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
4,4'-DDD	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
Endosulfan I	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
Endosulfan II	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
alpha-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
beta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
delta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
Endosulfan sulfate	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
Methoxychlor	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
Toxaphene	ND		40		ug/Kg		12/11/15 10:40	12/14/15 12:42	
Chlordane (technical)	ND		40		ug/Kg		12/11/15 10:40	12/14/15 12:42	
alpha-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	
gamma-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/14/15 12:42	

	MB MB	
Surrogate	%Recovery Qualifier	r Limits
Tetrachloro-m-xylene	105	57 - 122
DCB Decachlorobiphenyl	104	21 - 136

Lab Sample ID: MB 720-194011/1-A Matrix: Solid Analysis Batch: 194148

Analysis Daton. 134140								гтер Басси.	134011
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Dieldrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Endrin aldehyde	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Endrin	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Endrin ketone	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Heptachlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Heptachlor epoxide	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
4,4'-DDT	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
4,4'-DDE	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
4,4'-DDD	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Endosulfan I	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Endosulfan II	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
alpha-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
beta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
delta-BHC	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
A second s									

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 194011

5

8

1 Prep Type: Total/NA

Method: 8081A - Organochlorine	Pesticides	(GC)	(Continued)
--------------------------------	------------	------	-------------

Lab Sample ID: MB 720-194011/1-A	

Matrix: Solid Analysis Batch: 194148

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Methoxychlor	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Toxaphene	ND		40		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
Chlordane (technical)	ND		40		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
alpha-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
gamma-Chlordane	ND		2.0		ug/Kg		12/11/15 10:40	12/15/15 07:27	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		57 - 122				12/11/15 10:40	12/15/15 07:27	1
DCB Decachlorobiphenyl	121		21 - 136				12/11/15 10:40	12/15/15 07:27	1

Lab Sample ID: LCS 720-194011/2-A Matrix: Solid

Client Sample ID: Lab Control Sample

Analysis Batch: 194086	Spike	LCS	1.09			Prep Batch: 194011 %Rec.
Analyte	Added		Qualifier	Unit	D %Rec	Limits
Aldrin	16.7	17.3		ug/Kg		65 - 120
Dieldrin	16.7	17.1		ug/Kg	103	72 - 120
Endrin aldehyde	16.7	19.1		ug/Kg	115	68 - 120
Endrin	16.7	17.7		ug/Kg	106	68 - 120
Endrin ketone	16.7	20.0		ug/Kg	120	84 - 133
Heptachlor	16.7	17.4		ug/Kg	105	69 - 120
Heptachlor epoxide	16.7	21.4	*	ug/Kg	128	68 - 120
4,4'-DDT	16.7	17.7		ug/Kg	106	63 - 127
4,4'-DDE	16.7	18.0		ug/Kg	108	84 - 126
4,4'-DDD	16.7	17.4		ug/Kg	104	85 - 128
Endosulfan I	16.7	17.0		ug/Kg	102	62 - 120
Endosulfan II	16.7	17.0		ug/Kg	102	65 - 120
alpha-BHC	16.7	15.9		ug/Kg	95	62 - 120
beta-BHC	16.7	19.4		ug/Kg	117	74 - 124
gamma-BHC (Lindane)	16.7	17.7		ug/Kg	106	72 - 120
delta-BHC	16.7	14.2		ug/Kg	85	43 - 125
Endosulfan sulfate	16.7	15.4		ug/Kg	92	84 - 126
Methoxychlor	16.7	17.8		ug/Kg	107	71 - 132
alpha-Chlordane	16.7	16.4		ug/Kg	98	70 - 120
gamma-Chlordane	16.7	16.9		ug/Kg	101	68 - 120
LCS	S LCS					

	203	203	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	115		57 - 122
DCB Decachlorobiphenyl	104		21 - 136

Lab Sample ID: LCS 720-194011/2-A Matrix: Solid

Analysis Ratch: 10/1/9

Analysis Batch: 194148	• "						Prep Batch: 194011
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	16.7	16.7		ug/Kg		100	65 - 120
Dieldrin	16.7	16.9		ug/Kg		102	72 - 120

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

1-1-404044

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 720-194011/2-A Matrix: Solid		Client Sample ID: Lab Control Sam Prep Type: Total/						
Analysis Batch: 194148	Spike		1.00				Prep Batch: 194011 %Rec.	
Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec.	
Endrin aldehyde		19.3	Quaimer	ug/Kg		116		
Endrin	16.7	18.5		ug/Kg		111	68 - 120	
Endrin ketone	16.7	18.8		ug/Kg		113	84 - 133	
	16.7	16.1				97	69 - 120	
Heptachlor	16.7	10.1		ug/Kg		97 107	69 - 120 68 - 120	
Heptachlor epoxide				ug/Kg				
4,4'-DDT	16.7	19.1		ug/Kg		115	63 - 127	
4,4'-DDE	16.7	17.4		ug/Kg		105	84 - 126	
4,4'-DDD	16.7	18.8		ug/Kg		113	85 - 128	
Endosulfan I	16.7	17.9		ug/Kg		107	62 - 120	
Endosulfan II	16.7	18.0		ug/Kg		108	65 - 120	
alpha-BHC	16.7	15.9		ug/Kg		95	62 - 120	
beta-BHC	16.7	19.8		ug/Kg		119	74 - 124	
gamma-BHC (Lindane)	16.7	16.9		ug/Kg		101	72 - 120	
delta-BHC	16.7	12.5		ug/Kg		75	43 - 125	
Endosulfan sulfate	16.7	17.5		ug/Kg		105	84 - 126	
Methoxychlor	16.7	18.4		ug/Kg		111	71 - 132	
alpha-Chlordane	16.7	17.1		ug/Kg		102	70 - 120	
gamma-Chlordane	16.7	17.4		ug/Kg		104	68 - 120	

	LUS LUS	
Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	110	57 - 122
DCB Decachlorobiphenyl	121	21 - 136

Lab Sample ID: 720-69089-A-5-E MS Matrix: Solid Analysis Batch: 194086

Analysis Batch: 194086	Sample	Sample	Spike	MS	MS			Prep Batch: 194011 %Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D %Rec	Limits
Aldrin	ND		16.5	16.7		ug/Kg		53 - 120
Dieldrin	ND		16.5	23.4	F1	ug/Kg	142	46 - 130
Endrin aldehyde	ND		16.5	21.7	F1	ug/Kg	132	40 - 120
Endrin	ND		16.5	17.6	р	ug/Kg	107	32 - 143
Endrin ketone	ND		16.5	20.3	F1	ug/Kg	123	40 - 120
Heptachlor	ND		16.5	17.2		ug/Kg	104	52 - 120
Heptachlor epoxide	ND		16.5	18.5		ug/Kg	112	40 - 120
4,4'-DDT	150		16.5	162	4	ug/Kg	72	17 - 144
4,4'-DDE	560		16.5	553	4	ug/Kg	-46	40 - 120
4,4'-DDD	ND		16.5	22.0	F1	ug/Kg	133	40 - 120
Endosulfan I	ND		16.5	18.6		ug/Kg	112	40 - 120
Endosulfan II	ND		16.5	18.7		ug/Kg	113	40 - 120
alpha-BHC	ND		16.5	16.1		ug/Kg	98	40 - 120
beta-BHC	ND		16.5	20.1	F1	ug/Kg	122	40 - 120
gamma-BHC (Lindane)	ND		16.5	16.9		ug/Kg	102	58 - 120
delta-BHC	ND		16.5	14.6		ug/Kg	88	40 - 120
Endosulfan sulfate	ND	F1	16.5	21.7	F1	ug/Kg	131	40 - 120
Methoxychlor	ND		16.5	21.8	F1	ug/Kg	132	40 - 120
alpha-Chlordane	ND	F1	16.5	20.2	F1	ug/Kg	123	40 - 120
gamma-Chlordane	ND		16.5	19.4		ug/Kg	118	40 - 120

TestAmerica Pleasanton

QC Sample Results

Client: Cornerstone Earth Group Project/Site: 150 Jefferson Drive

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	110		57 - 122
DCB Decachlorobiphenyl	135		21 - 136

Lab Sample ID: 720-69089-A-5-F MSD Matrix: Solid Analysis Batch: 194086

Analysis Batch: 194086									Prep Ba	tch: 19	94011
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	ND		16.6	15.4		ug/Kg		93	53 - 120	8	20
Dieldrin	ND		16.6	21.6		ug/Kg		130	46 - 130	8	20
Endrin aldehyde	ND		16.6	21.3	F1	ug/Kg		129	40 - 120	2	20
Endrin	ND		16.6	16.2	р	ug/Kg		98	32 - 143	8	20
Endrin ketone	ND		16.6	18.1		ug/Kg		109	40 - 120	12	20
Heptachlor	ND		16.6	15.0		ug/Kg		90	52 - 120	14	20
Heptachlor epoxide	ND		16.6	17.2		ug/Kg		104	40 - 120	7	20
4,4'-DDT	150		16.6	149	4	ug/Kg		-4	17 _ 144	8	20
4,4'-DDE	560		16.6	512	4	ug/Kg		-291	40 - 120	8	20
4,4'-DDD	ND		16.6	20.3	F1	ug/Kg		123	40 - 120	8	20
Endosulfan I	ND		16.6	17.0		ug/Kg		103	40 - 120	9	20
Endosulfan II	ND		16.6	17.2		ug/Kg		104	40 - 120	8	30
alpha-BHC	ND		16.6	14.3		ug/Kg		86	40 - 120	12	20
beta-BHC	ND		16.6	18.0		ug/Kg		108	40 - 120	11	20
gamma-BHC (Lindane)	ND		16.6	14.7		ug/Kg		89	58 - 120	14	20
delta-BHC	ND		16.6	13.1		ug/Kg		79	40 - 120	11	20
Endosulfan sulfate	ND	F1	16.6	19.4		ug/Kg		117	40 - 120	11	20
Methoxychlor	ND		16.6	19.4		ug/Kg		117	40 - 120	12	20
alpha-Chlordane	ND	F1	16.6	18.8		ug/Kg		114	40 - 120	7	20
gamma-Chlordane	ND		16.6	17.3		ug/Kg		104	40 - 120	12	20
	MSD	Med									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	98		57 - 122
DCB Decachlorobiphenyl	130		21 - 136

Lab Sample ID: MB 720-194275/1-A Matrix: Water Analysis Batch: 194267

MB MB **Result Qualifier** RL MDL Unit Prepared Analyte D Analyzed Dil Fac 1 Aldrin ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 Dieldrin ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 Endrin aldehyde ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 Endrin ND ug/L 12/16/15 09:44 12/16/15 14:21 0.060 1 Endrin ketone ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 Heptachlor ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 ND Heptachlor epoxide 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 4,4'-DDT ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 4,4'-DDE ND 12/16/15 09:44 12/16/15 14:21 0.060 ug/L 1 4,4'-DDD ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 Endosulfan I ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 Endosulfan II ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 alpha-BHC ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 1 beta-BHC ND ug/L 0.060 12/16/15 09:44 12/16/15 14:21 1 ND 0.060 12/16/15 09:44 12/16/15 14:21 gamma-BHC (Lindane) ug/L 1

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 194275

TestAmerica Job ID: 720-69116-1

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 194275

2 3 4 5

8

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID:	MB	720-194275/1-A
Matrix: Water		

Analysis Batch: 194267

MB	MR							134210
		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.060		ug/L		12/16/15 09:44	12/16/15 14:21	1
ND		0.060		ug/L		12/16/15 09:44	12/16/15 14:21	1
ND		0.060		ug/L		12/16/15 09:44	12/16/15 14:21	1
ND		1.0		ug/L		12/16/15 09:44	12/16/15 14:21	1
ND		1.0		ug/L		12/16/15 09:44	12/16/15 14:21	1
ND		0.060		ug/L		12/16/15 09:44	12/16/15 14:21	1
ND		0.060		ug/L		12/16/15 09:44	12/16/15 14:21	1
МВ	МВ							
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
87		36 - 112				12/16/15 09:44	12/16/15 14:21	1
82		14 - 126				12/16/15 09:44	12/16/15 14:21	1
	ND ND ND ND ND ND MB %Recovery 87	ResultQualifierNDNDNDNDNDNDNDNDNDMB%RecoveryQualifier8787	Result Qualifier RL ND 0.060 ND 0.060 ND 0.060 ND 0.060 ND 1.0 ND 1.0 ND 0.060 MB MB %Recovery Qualifier Limits 36 - 112 36 - 112	Result Qualifier RL MDL ND 0.060 0.060 ND 0.060 0.060 ND 0.060 0.060 ND 1.0 0.060 ND 1.0 0.060 ND 0.060 0.060 ND 0.060 0.060 ND 0.060 0.060 MB MB 36 - 112	Result Qualifier RL MDL Unit ND 0.060 ug/L ND 0.060 ug/L ND 0.060 ug/L ND 0.060 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 0.060 ug/L ND 0.360 ug/L ND 36 - 112 36 - 112	Result Qualifier RL MDL Unit D ND 0.060 ug/L ug	Result Qualifier RL MDL Unit D Prepared ND 0.060 ug/L 12/16/15 09:44 ND 1.0 ug/L 12/16/15 09:44 ND 1.0 ug/L 12/16/15 09:44 ND 0.060 ug/L 12/16/15 09:44 MB MB MB %Recovery Qualifier Limits Prepared 36 - 112 36 - 112 12/16/15 09:44	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 ND 1.0 ug/L 12/16/15 09:44 12/16/15 14:21 ND 1.0 ug/L 12/16/15 09:44 12/16/15 14:21 ND 0.060 ug/L 12/16/15 09:44 12/16/15 14:21 MB MB MB MB MB MB %Recovery Qualifier Limits Prepared Analyzed 36 - 112 36 - 112 12/

Lab Sample ID: LCS 720-194275/2-A Matrix: Water Analysis Batch: 194267

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 194267	Spike	LCS	LCS				Prep Batch: 194275 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	0.500	0.493		ug/L		99	44 - 120
Dieldrin	0.500	0.518		ug/L		104	43 - 120
Endrin aldehyde	0.500	0.538		ug/L		108	40 - 120
Endrin	0.500	0.531		ug/L		106	15 - 138
Endrin ketone	0.500	0.536		ug/L		107	40 - 120
Heptachlor	0.500	0.504		ug/L		101	17 - 128
Heptachlor epoxide	0.500	0.524		ug/L		105	40 - 120
4,4'-DDT	0.500	0.517		ug/L		103	46 - 120
4,4'-DDE	0.500	0.515		ug/L		103	40 - 120
4,4'-DDD	0.500	0.522		ug/L		104	40 - 120
Endosulfan I	0.500	0.520		ug/L		104	40 - 120
Endosulfan II	0.500	0.533		ug/L		107	40 - 120
alpha-BHC	0.500	0.512		ug/L		102	40 - 120
beta-BHC	0.500	0.545		ug/L		109	40 - 120
gamma-BHC (Lindane)	0.500	0.514		ug/L		103	46 - 121
delta-BHC	0.500	0.385		ug/L		77	40 - 120
Endosulfan sulfate	0.500	0.501		ug/L		100	40 - 120
Methoxychlor	0.500	0.551		ug/L		110	40 - 120
alpha-Chlordane	0.500	0.517		ug/L		103	40 - 120
gamma-Chlordane	0.500	0.519		ug/L		104	40 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	99		36 - 112
DCB Decachlorobiphenyl	89		14 - 126

Lab Sample ID: LCSD 720-194275/3-A			C	Client S	Sample	ID: Lat	o Control	Sample	e Dup
Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 194267							Prep Ba	atch: 19	94275
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	0.500	0.496		ug/L		99	44 - 120	1	20

3 4 5

8 9

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 720-194275	5/3-A				Client Sa	ample	ID: Lab	Control		
Matrix: Water								Prep Ty		
Analysis Batch: 194267		Spike	LCSD					Prep Ba %Rec.	atch: 18	RPD
Awalista		•			11		0/ D = =			
Analyte		Added		Qualifier		D	%Rec	Limits	RPD	Limit 20
		0.500	0.552		ug/L		110		6	
Endrin aldehyde		0.500	0.571		ug/L		114	40 - 120	6	20
Endrin		0.500	0.567		ug/L		113	15 - 138	7	20
Endrin ketone		0.500	0.578		ug/L		116	40 - 120	7	20
Heptachlor		0.500	0.501		ug/L		100	17 - 128	1	20
Heptachlor epoxide		0.500	0.547		ug/L		109	40 - 120	4	20
4,4'-DDT		0.500	0.566		ug/L		113	46 - 120	9	20
4,4'-DDE		0.500	0.554		ug/L		111	40 - 120	7	20
4,4'-DDD		0.500	0.567		ug/L		113	40 - 120	8	20
Endosulfan I		0.500	0.548		ug/L		110	40 - 120	5	30
Endosulfan II		0.500	0.569		ug/L		114	40 - 120	7	20
alpha-BHC		0.500	0.494		ug/L		99	40 - 120	4	20
beta-BHC		0.500	0.555		ug/L		111	40 - 120	2	20
gamma-BHC (Lindane)		0.500	0.507		ug/L		101	46 - 121	1	20
delta-BHC		0.500	0.395		ug/L		79	40 - 120	3	20
Endosulfan sulfate		0.500	0.541		ug/L		108	40 - 120	8	20
Methoxychlor		0.500	0.597		ug/L		119	40 - 120	8	20
alpha-Chlordane		0.500	0.547		ug/L		109	40 - 120	6	20
gamma-Chlordane		0.500	0.547		ug/L		109	40 - 120	5	20
•		0.000	5.047		49, L		.00	10 - 120	0	20
	CSD LCSD									
Surrogate %Reco	very Qualifier	Limits								
Tetrachloro-m-xylene	93	36 - 112								
DCB Decachlorobiphenyl	101	14 - 126								

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 720-194 Matrix: Solid Analysis Batch: 194070	010/1-A						i i	le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
PCB-1221	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
PCB-1232	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
PCB-1242	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
PCB-1248	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
PCB-1254	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
PCB-1260	ND		50		ug/Kg		12/11/15 10:16	12/12/15 15:40	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		45 - 132				12/11/15 10:16	12/12/15 15:40	1
DCB Decachlorobiphenyl	98		42 - 146				12/11/15 10:16	12/12/15 15:40	1

5

8 9

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 720- Matrix: Solid							Clie		•	Prep Type: T	otal/N/
Analysis Batch: 194070										Prep Batch:	194010
Associate				Spike		LCS	11	_	0/ D	%Rec.	
Analyte PCB-1016				Added		Qualifier		D		Limits 65 - 121	
				133	124		ug/Kg		93		
PCB-1260				133	122		ug/Kg		91	68 - 127	
	LCS	LCS									
Surrogate	%Recovery	Quali	fier	Limits							
Tetrachloro-m-xylene	96			45 - 132							
DCB Decachlorobiphenyl	96			42 - 146							
Lab Sample ID: 720-6906 Matrix: Solid	61-A-1-F MS							C	lient Sar	nple ID: Matri Prep Type: T	
Analysis Batch: 194070										Prep Batch:	19401
-	Sample	Samp	ole	Spike	MS	MS				%Rec.	
Analyte	Result	Quali	fier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND			132	117		ug/Kg		88	69 - 120	
PCB-1260	ND	F1		132	123		ug/Kg		77	73 - 114	
	MS	MS									
Surrogate	%Recovery	Quali	fier	Limits							
Tetrachloro-m-xylene	88	-		45 - 132							
DCB Decachlorobiphenyl	90			42 - 146							
Matrix: Solid	61-A-1-G MSD)					Client	Sam	ple ID: M	atrix Spike Du Prep Type: T Prep Batch:	otal/N/
Lab Sample ID: 720-6906 Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016	Sample Result	Samp Quali		Spike Added	Result	MSD Qualifier	Unit ug/Kg	Samı	%Rec	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	otal/N/ 19401 RPI D 2 2 2
Matrix: Solid Analysis Batch: 194070 ^{Analyte}	Sample Result	Samp Quali		Added	Result	-	Unit		%Rec	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	otal/N 19401 RP D Lim
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016	Sample Result ND ND	Samp Quali		Added 131	Result	Qualifier	Unit ug/Kg		%Rec	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	otal/N 19401 RP D Lim 2 2
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260	Sample Result ND ND MSD	Samp Quali F1 MSD	fier	Added 131	Result	Qualifier	Unit ug/Kg		%Rec	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	otal/N 19401 RP D Lim 2 2
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate	Sample Result ND ND	Samp Quali F1 MSD	fier	Added 131 131	Result	Qualifier	Unit ug/Kg		%Rec	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	otal/N 19401 RP D Lim 2 2
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016	Sample Result ND ND MSD %Recovery	Samp Quali F1 MSD	fier	Added 131 131 Limits	Result	Qualifier	Unit ug/Kg		%Rec	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	otal/N 19401 RP D Lim 2 2
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water	Sample Result ND ND MSD %Recovery 78 82	Samp Quali F1 MSD	fier	Added 131 131 Limits 45 - 132	Result	Qualifier	Unit ug/Kg	<u>D</u>	- <mark>%Rec</mark> 79 69	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1	d Blan otal/N. 19401 RP 2 2 9 2
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 <i>MSD</i> <i>Quali</i>	fier	Added 131 131 Limits 45 - 132 42 - 146	Result 104 112	Qualifier F1	Unit ug/Kg ug/Kg	D	• %Rec 79 69 ent Sam	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1 73 - 114 Ple ID: Metho Prep Type: T Prep Batch:	otal/N/ 19401 RP 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 1 2 1
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 <i>MSD</i> <i>Quali</i> MB	fier	Added 131 131 Limits 45 - 132 42 - 146	Result 104 112	Qualifier F1 MDL Unit	Unit ug/Kg ug/Kg	Cli D	ent Sam	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1 73 - 114 Ple ID: Metho Prep Type: T Prep Batch: Analyzed	otal/N, 19401 RP 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 1 2 1
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 <i>MSD</i> Quali esult ND	fier	Added 131 131 Limits 45 - 132 42 - 146 0	Result 104 112 .50	Qualifier F1 <u>MDL</u> Unit	- Unit ug/Kg ug/Kg	D Cli 1 1	• %Rec 79 69 • ent Sam Prepared 16/15 09:41	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1 73 - 114 7 Ple ID: Metho Prep Type: T Prep Batch: Analyzed 12/16/15 13:49 12/16/15 13:49	otal/N, 19401 RP 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 1 2 1
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 <i>MSD</i> Quali Sult ND	fier	Added 131 131 <i>Limits</i> 45 - 132 42 - 146 0 0	Result 104 112 .50	Qualifier F1 MDL ug/L ug/L	- Unit ug/Kg ug/Kg	D Cli 12/ 12/	• %Rec 79 69 • ent Sam Prepared 16/15 09:41 16/15 09:41	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1 73 - 114 7 Ple ID: Metho Prep Type: T Prep Batch: Analyzed 12/16/15 13:49 12/16/15 13:49	otal/N, 19401 RP 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 1 2 1
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221 PCB-1232	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 MSD Quali MSD Sult ND ND ND	fier	Added 131 131 <i>Limits</i> 45 - 132 42 - 146 0 0 0 0	Result 104 112 50 .50	Qualifier F1 MDL ug/L ug/L ug/L	Unit ug/Kg ug/Kg	D Cli 12/ 	%Rec 79 69 ent Sam Prepared 16/15 16/15 16/15 09:41 16/15 16/15	Prep Type: T Prep Batch: %Rec. Limits RP 69 - 120 1 73 - 114 1 ple ID: Methor Prep Type: T Prep Batch: Analyzed 12/16/15 13:49 12/16/15 13:49 12/16/15 13:49	otal/N, 19401 RP 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 1 2 1
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 MSD Quali MSD Sult ND ND ND	fier	Added 131 131 <i>Limits</i> 45 - 132 42 - 146 0 0 0 0 0 0	Result 104 112 50 .50 .50	Qualifier F1 MDL Unit ug/L ug/L ug/L ug/L	Unit ug/Kg ug/Kg	D Cli D <u>12/</u> 12/ 12/ 12/	%Rec 79 69 ent Sam 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41	Analyzed Analyzed 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15	otal/N, 19401 RP 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 9 2 2 1 2 1
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 MSD Quali MD ND ND ND ND ND ND	fier	Added 131 131 Limits 45 - 132 42 - 146 0 0 0 0 0 0 0 0 0 0 0 0 0	Result 104 112 50 .50 .50 .50 .50 .50 .50 .50	MDL F1	Unit ug/Kg ug/Kg	D Cli D 12/ 12/ 12/ 12/ 12/ 12/ 12/	%Rec 79 69 ent Sam 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41	Analyzed Analyzed 12/16/15	otal/N. 19401 RP 2 9 2 4 Blan otal/N. 19427
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 MSD Quali MSD Quali ND ND ND ND ND ND ND	fier	Added 131 131 Limits 45 - 132 42 - 146 0 0 0 0 0 0 0 0 0 0 0 0 0	Result 104 112 50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50	Qualifier F1 E1 Unitities ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Unit ug/Kg ug/Kg	D Cli D <u>12/</u> 12/ 12/ 12/ 12/ 12/ 12/	%Rec 79 69 ent Sam 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41	Analyzed Analyzed 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15	otal/N. 19401 RP 2 9 2 4 Blan otal/N. 19427
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1212 PCB-1242 PCB-1248 PCB-1254	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A	Samp Quali F1 MSD Quali MD ND ND ND ND ND ND ND ND ND	fier	Added 131 131 Limits 45 - 132 42 - 146 0 0 0 0 0 0 0 0 0 0 0 0 0	Result 104 112 50 .50 .50 .50 .50 .50 .50 .50	MDL F1	Unit ug/Kg ug/Kg	D Cli D <u>12/</u> 12/ 12/ 12/ 12/ 12/ 12/	%Rec 79 69 ent Sam 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41	Analyzed Analyzed 12/16/15	otal/N. 19401 RP 2 9 2 4 Blan otal/N. 19427
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A Re	Samp Quali F1 MSD Quali MB Sult ND ND ND ND ND ND ND ND ND ND ND	fier fier MB Qualifier	Added 131 131 Limits 45 - 132 42 - 146 0 0 0 0 0 0 0 0 0 0 0 0 0	Result 104 112 50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50	Qualifier F1 E1 Unitities ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Unit ug/Kg ug/Kg	D I 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/	%Rec 79 69 ent Sam 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41	Analyzed Analyzed 12/16/15 13/49	otal/N/ 19401 RP 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9
Matrix: Solid Analysis Batch: 194070 Analyte PCB-1016 PCB-1260 Surrogate Tetrachloro-m-xylene DCB Decachlorobiphenyl Lab Sample ID: MB 720-1 Matrix: Water Analysis Batch: 194252 Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Sample Result ND ND <i>MSD</i> %Recovery 78 82 194272/1-A Re	Samp Quali F1 MSD Quali MB Sult ND ND ND ND ND ND ND ND ND ND ND	fier	Added 131 131 Limits 45 - 132 42 - 146 0 0 0 0 0 0 0 0 0 0 0 0 0	Result 104 112 50 .50	Qualifier F1 E1 Unitities ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Unit ug/Kg ug/Kg	D Cli D 12/ 12/ 12/ 12/ 12/ 12/ 12/	%Rec 79 69 ent Sam 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41 16/15 09:41	Analyzed Analyzed 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15 12/16/15	otal/N/ 19401 RP D 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 0 1 7 2 9 2 0 1 2 9 2 0 1 2 9 2 0 2 1 1 7 2 9 2 2 9 2 2 1 1 7 2 9 2 2 9 2 2 1 1 7 2 9 2 2 2 9 2 2 2 2 9 2

QC Sample Results

Client: Cornerstone Earth Group Project/Site: 150 Jefferson Drive

Lab Sample ID: LCS 720-1	94272/2-A						Clie	nt Sa	mple ID:	Lab Control S	Sample
Matrix: Water										Prep Type: To	
Analysis Batch: 194253										Prep Batch:	194272
-			Spike	L	CS	LCS				%Rec.	
Analyte			Added	Res	ult	Qualifier	Unit	D	%Rec	Limits	
PCB-1016			4.00	3	.92		ug/L		98	40 - 115	
PCB-1260			4.00	3	.99		ug/L		100	48 ₋ 115	
	1.00	LCS									
Surrogate	%Recovery		Limits								
Tetrachloro-m-xylene	82	Quaimer	19 - 98	-							
DCB Decachlorobiphenyl	85		10 - 122								
	00		10-122								
Lab Sample ID: LCSD 720	-194272/3-A					c	lient Sa	ample	ID: Lab	Control Samp	ole Dur
Matrix: Water								- C.		Prep Type: To	
Analysis Batch: 194253										Prep Batch:	
			Spike	LC	SD	LCSD				%Rec.	RPD
Analyte			Added	Res	ult	Qualifier	Unit	D	%Rec	Limits RPI) Limi
PCB-1016			4.00	3	.82		ug/L		96	40 - 115	3 20
PCB-1260			4.00	3	.87		ug/L		97	48 - 115	3 20
	1000	LCSD									
Sumonoto			Limits								
Surrogate Tetrachloro-m-xylene	%Recovery 82	Quaimer		_							
DCB Decachlorobiphenyl	85		19 - 98 10 - 122								
-	65		10 - 122								
Method: 6010B - Metal	s (ICP)										
Lab Sample ID: MB 720-19	94051/1-A							Clie	ent Sam	ple ID: Method	l Blank
Matrix: Solid										Prep Type: To	
Analysis Batch: 194172										Prep Batch:	
-		MB MB									
Analyte	Re	esult Qualifie	r	RL	N	IDL Unit		D P	repared	Analyzed	Dil Fac
Lead		ND		0.50		mg/K	g	12/1	1/15 16:48	3 12/14/15 20:38	1
Lab Sample ID: LCS 720-1	04054/2 4						Clie	nt Co	male ID:	Lab Control (Somela
Matrix: Solid	194031/2-A						Cile	in Sa	inple ID.	Lab Control S	
Matrix: Solid										Prep Type: To	
Analysia Bataby 404472			Spike		~~	LCS				Prep Batch: %Rec.	19405
Analysis Batch: 194172			Added			Qualifier	Unit	D	%Rec	Limits	
			Auueu			Quaimer					
Analyte				/	53		ma/ka		Q1	80 120	
			50.0	4	5.3		mg/Kg		91	80 - 120	
Analyte Lead	- 194051/3-A			4	5.3	c		ample			ole Dur
Analyte Lead Lab Sample ID: LCSD 720	-194051/3-A			4	5.3	C		ample		Control Samp	
Analyte	-194051/3-A			4	5.3	C		ample			otal/NA

		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	 	50.0	45.5		mg/Kg		91	80 - 120	1	20

Lab Sample ID: LCSSRM 720-194051/4	-A		Client Sample ID): Lab Control Sample
Matrix: Solid				Prep Type: Total/NA
Analysis Batch: 194172				Prep Batch: 194051
	Spike	LCSSRM LCSSRM		%Rec.
Analyte	Added	Result Qualifier	Unit D %Rec	Limits
Lead	302	261	mg/Kg 86	62 - 113

QC Sample Results

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 720-69155 Matrix: Solid Analysis Batch: 194172		Sample	Spike	MS	MS		CI	ient Sa	mple ID: I Prep Typ Prep Ba %Rec.	be: Tot	al/NA
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	2.2	F1	39.1	29.8	F1	mg/Kg		71	75 - 125		
Lab Sample ID: 720-69155 Matrix: Solid Analysis Batch: 194172	-A-1-B MSD					Client S	Samp	le ID: N	latrix Spil Prep Tyj Prep Ba	be: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	2.2	F1	38.8	29.2	F1	mg/Kg		70	75 - 125	2	20

Prep Type

Total/NA

Matrix

Solid

Client Sample ID

Matrix Spike Duplicate

Matrix Spike

SB-15 (0-0.5')

SB-15 (2-2.5')

SB-14 (0-0.5')

SB-14 (2-2.5')

SB-12 (0-0.5')

SB-12 (2-2.5')

FD-1 (2-2.5')

Method Blank

Lab Control Sample

GC Semi VOA

Lab Sample ID

720-69116-1

720-69116-2

720-69116-4

720-69116-5

720-69116-7

720-69116-8

720-69116-9

Prep Batch: 194010

720-69061-A-1-F MS

720-69061-A-1-G MSD

Method

3546

3546

3546

3546

3546

3546

3546

3546

3546

3546

3546

Prep Batch

Prep Batch: 194011

LCS 720-194010/2-A

MB 720-194010/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-69089-A-5-E MS	Matrix Spike	Total/NA	Solid	3546	
720-69089-A-5-F MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	
720-69116-7	SB-12 (0-0.5')	Total/NA	Solid	3546	
720-69116-8	SB-12 (2-2.5')	Total/NA	Solid	3546	
720-69116-9	FD-1 (2-2.5')	Total/NA	Solid	3546	
720-69116-12	SB-11 (0-0.5')	Total/NA	Solid	3546	
720-69116-13	SB-11 (2-2.5')	Total/NA	Solid	3546	
720-69116-15	SB-13 (0-0.5')	Total/NA	Solid	3546	
720-69116-16	SB-13 (2-2.5')	Total/NA	Solid	3546	
LCS 720-194011/2-A	Lab Control Sample	Total/NA	Solid	3546	
MB 720-194011/1-A	Method Blank	Total/NA	Solid	3546	

Analysis Batch: 194070

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-69061-A-1-F MS	Matrix Spike	Total/NA	Solid	8082	194010
720-69061-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8082	194010
LCS 720-194010/2-A	Lab Control Sample	Total/NA	Solid	8082	194010
MB 720-194010/1-A	Method Blank	Total/NA	Solid	8082	194010

Analysis Batch: 194071

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-69116-1	SB-15 (0-0.5')	Total/NA	Solid	8082	194010
720-69116-2	SB-15 (2-2.5')	Total/NA	Solid	8082	194010
720-69116-4	SB-14 (0-0.5')	Total/NA	Solid	8082	194010
720-69116-5	SB-14 (2-2.5')	Total/NA	Solid	8082	194010
720-69116-7	SB-12 (0-0.5')	Total/NA	Solid	8082	194010
720-69116-8	SB-12 (2-2.5')	Total/NA	Solid	8082	194010
720-69116-9	FD-1 (2-2.5')	Total/NA	Solid	8082	194010

Analysis Batch: 194086

Lab Sample ID 720-69089-A-5-E MS	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 8081A	Prep Batch 194011
720-69089-A-5-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8081A	194011
720-69116-7	SB-12 (0-0.5')	Total/NA	Solid	8081A	194011
LCS 720-194011/2-A	Lab Control Sample	Total/NA	Solid	8081A	194011
MB 720-194011/1-A	Method Blank	Total/NA	Solid	8081A	194011

5 6

	-			 -
-				
, i oje	000010	0. 100	000110	

GC Semi VOA (Continued)

720-69155-A-1-A MS

LCS 720-194051/2-A

720-69155-A-1-B MSD

Matrix Spike

Matrix Spike Duplicate

Lab Control Sample

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-69116-8	B-12 (2-2.5')	Total/NA	Solid	8081A	19401
720-69116-9	FD-1 (2-2.5')	Total/NA	Solid	8081A	19401
720-69116-12	SB-11 (0-0.5')	Total/NA	Solid	8081A	19401
720-69116-13	SB-11 (2-2.5')	Total/NA	Solid	8081A	19401
720-69116-15	SB-13 (0-0.5')	Total/NA	Solid	8081A	19401
720-69116-16	SB-13 (2-2.5')	Total/NA	Solid	8081A	19401
LCS 720-194011/2-A	Lab Control Sample	Total/NA	Solid	8081A	19401
MB 720-194011/1-A	Method Blank	Total/NA	Solid	8081A	19401
Analysis Batch: 1942	52				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-69116-11		Total/NA	Water	8082	19427
MB 720-194272/1-A	Method Blank	Total/NA	Water	8082	19427
Analysis Batch: 1942	53				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
LCS 720-194272/2-A	Lab Control Sample	Total/NA	Water	8082	19427
LCSD 720-194272/3-A	Lab Control Sample Dup	Total/NA	Water	8082	19427
Analysis Batch: 1942	67				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-69116-11	EB-1	Total/NA	Water	8081A	19427
LCS 720-194275/2-A	Lab Control Sample	Total/NA	Water	8081A	19427
LCSD 720-194275/3-A	Lab Control Sample Dup	Total/NA	Water	8081A	19427
MB 720-194275/1-A	Method Blank	Total/NA	Water	8081A	19427
Prep Batch: 194272					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-69116-11		Total/NA	Water	3510C	
LCS 720-194272/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 720-194272/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 720-194272/1-A	Method Blank	Total/NA	Water	3510C	
Prep Batch: 194275					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-69116-11	EB-1	Total/NA	Water	3510C	
LCS 720-194275/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 720-194275/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 720-194275/1-A	Method Blank	Total/NA	Water	3510C	
/ Ietals					
Prep Batch: 194051					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-69116-7		Total/NA	Solid	3050B	
720-69116-12	SB-11 (0-0.5')	Total/NA	Solid	3050B	
720-69116-15	SB-13 (0-0.5')	Total/NA	Solid	3050B	
			2010	20000	

3050B

3050B

3050B

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Metals (Continued)

Prep Batch: 194051 (Continued)

Lab Sample ID LCSD 720-194051/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Matrix Solid	Method 3050B	Prep Batch
LCSSRM 720-194051/4-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 720-194051/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 194172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-69116-7	SB-12 (0-0.5')	Total/NA	Solid	6010B	194051
720-69116-12	SB-11 (0-0.5')	Total/NA	Solid	6010B	194051
720-69116-15	SB-13 (0-0.5')	Total/NA	Solid	6010B	194051
720-69155-A-1-A MS	Matrix Spike	Total/NA	Solid	6010B	194051
720-69155-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	6010B	194051
LCS 720-194051/2-A	Lab Control Sample	Total/NA	Solid	6010B	194051
LCSD 720-194051/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	194051
LCSSRM 720-194051/4-A	Lab Control Sample	Total/NA	Solid	6010B	194051
MB 720-194051/1-A	Method Blank	Total/NA	Solid	6010B	194051

Total/NA

Total/NA

Prep

Analysis

3050B

6010B

	d: 12/09/15 (6-15 (0-0.5') 08:22						•	: 720-69116-1 Matrix: Solid
	d: 12/09/15 1								
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	•	Analyst	Lab	
Total/NA	Prep	3546			194010			TAL PLS	
Total/NA	Analysis	8082		1	194071	12/12/15 16:47	DCH	TAL PLS	
Client Samp	ple ID: SB	-15 (2-2.5')					Lab	Sample ID:	: 720-69116-2
Date Collected	d: 12/09/15 (08:24						-	Matrix: Solid
Date Received	<u>d: 12/09/15 1</u>	17:05							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	•	Analyst	Lab	
Total/NA	Prep	3546			194010			TAL PLS	
Total/NA	Analysis	8082		1	194071			TAL PLS	
Client Samp Date Collected Date Received	d: 12/09/15 (08:42					Lab	Sample ID:	: 720-69116-4 Matrix: Solid
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	•	Analyst	Lab	
Total/NA	Prep	3546			194010	12/11/15 10:16	JEP	TAL PLS	
Total/NA	Analysis	8082		1	194071	12/12/15 17:20	DCH	TAL PLS	
Client Samp Date Collected Date Received	d: 12/09/15 (08:45					Lab	Sample ID:	: 720-69116-5 Matrix: Solid
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			194010		-	TAL PLS	
Total/NA	Analysis	8082		1				TAL PLS	
Client Samp Date Collected Date Received	d: 12/09/15 (08:58					Lab	Sample ID:	: 720-69116-7 Matrix: Solid
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	•	Analyst	Lab	
Total/NA	Prep	3546				12/11/15 10:40		TAL PLS	
Total/NA	Analysis	8081A		1		12/14/15 18:01		TAL PLS	
Total/NA	Prep	3546				12/11/15 10:16		TAL PLS	
	Prep Analysis	3546 8082		1					
Total/NA	•			1		12/11/15 10:18		TAL PLS	

TAL PLS

TAL PLS

4

194051 12/11/15 16:48 ASB

194172 12/14/15 21:44 CAM

12/16/2015

Lab Sample ID: 720-69116-8

Lab Sample ID: 720-69116-9

Lab Sample ID: 720-69116-12

Lab Sample ID: 720-69116-13

Matrix: Solid

Matrix: Solid

5 10

Lab Sample ID: 720-69116-11

Matrix: Water

Matrix: Solid

Matrix: Solid

Client Sample ID: SB-12 (2-2.5))
Date Collected: 12/09/15 08:59	
Date Received: 12/09/15 17:05	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			194011	12/11/15 10:40	JEP	TAL PLS
Total/NA	Analysis	8081A		1	194148	12/15/15 08:00	JZT	TAL PLS
Total/NA	Prep	3546			194010	12/11/15 10:16	JEP	TAL PLS
Total/NA	Analysis	8082		1	194071	12/12/15 18:10	DCH	TAL PLS

Client Sample ID: FD-1 (2-2.5') Date Collected: 12/09/15 08:59 Date Received: 12/09/15 17:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			194011	12/11/15 10:40	JEP	TAL PLS
Total/NA	Analysis	8081A		1	194148	12/15/15 08:17	JZT	TAL PLS
Total/NA	Prep	3546			194010	12/11/15 10:16	JEP	TAL PLS
Total/NA	Analysis	8082		1	194071	12/12/15 18:26	DCH	TAL PLS

Client Sample ID: EB-1 Date Collected: 12/09/15 09:10 Date Received: 12/09/15 17:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			194275	12/16/15 09:44	NDU	TAL PLS
Total/NA	Analysis	8081A		1	194267	12/16/15 15:14	MQL	TAL PLS
Total/NA	Prep	3510C			194272	12/16/15 09:41	NDU	TAL PLS
Total/NA	Analysis	8082		1	194252	12/16/15 14:05	DCH	TAL PLS

Client Sample ID: SB-11 (0-0.5') Date Collected: 12/09/15 09:23 Date Received: 12/09/15 17:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			194011	12/11/15 10:40	JEP	TAL PLS
Total/NA	Analysis	8081A		1	194148	12/15/15 08:34	JZT	TAL PLS
Total/NA	Prep	3050B			194051	12/11/15 16:48	ASB	TAL PLS
Total/NA	Analysis	6010B		4	194172	12/14/15 21:49	CAM	TAL PLS

Client Sample ID: SB-11 (2-2.5') Date Collected: 12/09/15 09:25 Date Received: 12/09/15 17:05

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			194011	12/11/15 10:40	JEP	TAL PLS
Total/NA	Analysis	8081A		1	194148	12/15/15 08:51	JZT	TAL PLS

Date Collected: 12/09/15 10:00

Client Sample ID: SB-13 (0-0.5')

Lab Sample ID: 720-69116-16

Lab Sample ID: 720-69116-15 Matrix: Solid

5
8
9
10
1 (
11
11 12

Matrix: Solid

Date Received: 12/09/15 17:05 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3546 194011 12/11/15 10:40 JEP TAL PLS Total/NA 8081A 194148 12/15/15 09:08 JZT Analysis TAL PLS 1 Total/NA Prep 3050B 194051 12/11/15 16:48 ASB TAL PLS Total/NA Analysis 6010B 194172 12/14/15 21:54 CAM TAL PLS 4

Client Sample ID: SB-13 (2-2.5') Date Collected: 12/09/15 10:02 Date Received: 12/09/15 17:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			194011	12/11/15 10:40	JEP	TAL PLS
Total/NA	Analysis	8081A		1	194148	12/15/15 09:24	JZT	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority California	Program State Prog	Iram	EPA Region 9	Certification ID 2496	Expiration Date 01-31-16 *
Analysis Method	Prep Method	Matrix	Analyt	e	

* Certification renewal pending - certification considered valid.

Method Summary

Client: Cornerstone Earth Group Project/Site: 150 Jefferson Drive

Method	Method Description	Protocol	Laboratory
8081A	Organochlorine Pesticides (GC)	SW846	TAL PLS
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: Cornerstone Earth Group Project/Site: 150 Jefferson Drive TestAmerica Job ID: 720-69116-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-69116-1	SB-15 (0-0.5')	Solid	12/09/15 08:22	12/09/15 17:05
720-69116-2	SB-15 (2-2.5')	Solid	12/09/15 08:24	12/09/15 17:05
720-69116-4	SB-14 (0-0.5')	Solid	12/09/15 08:42	12/09/15 17:05
720-69116-5	SB-14 (2-2.5')	Solid	12/09/15 08:45	12/09/15 17:05
720-69116-7	SB-12 (0-0.5')	Solid	12/09/15 08:58	12/09/15 17:05
720-69116-8	SB-12 (2-2.5')	Solid	12/09/15 08:59	12/09/15 17:05
720-69116-9	FD-1 (2-2.5')	Solid	12/09/15 08:59	12/09/15 17:05
720-69116-11	EB-1	Water	12/09/15 09:10	12/09/15 17:05
720-69116-12	SB-11 (0-0.5')	Solid	12/09/15 09:23	12/09/15 17:05
720-69116-13	SB-11 (2-2.5')	Solid	12/09/15 09:25	12/09/15 17:05
720-69116-15	SB-13 (0-0.5')	Solid	12/09/15 10:00	12/09/15 17:05
720-69116-16	SB-13 (2-2.5')	Solid	12/09/15 10:02	12/09/15 17:05

	Analysis Tur	Tel/Fax: 40	GROUP		8
	Analysis Turnaround Time	Tel/Fax: 408-245-4600 ext. 101	P Project Manager: Kurt Soenen	9 1 1 1 1	9 0 1 2 3
		ipour	Chain of Custody Record	720-69116	4 5
Laboratory's Sample Specific Notes Laboratory's Sample Specific Notes Laboratory Sample Specific Notes Laboratory Sample Specific Notes	Laborato	herica	121915 12 121915 10 550 5		

.

E EARTH GROUP	μΩ	Chain o	Chain of Custody Record		
	Project Manager: Kurt Soenen		Site Sampler: Sarah Kuehn	Date: 12/9/15	COC No:
Cornerstone Earth Group, Inc.	Tel/Fax: 408-245-4600 ext. 101		ıpour	Lab: Test America	2 of 2 COCs
1259 Oakmead Pkwy	Analysis Turnaround Time				Laboratory's Job No.
Sunnyvale, California 94085					
(408) 245-4600 Phone	TAT if different from Below				
(408) 245-4620 FAX	1 week				
Project Name: 150 Jefferson Drive	3 days				
Site: Menlo Park, CA	2 days				<u>111 11 11 11 11 11 11 11 11 11 11 11 11</u>
Project Number: 166-14-7	1 day		10B 081A 082A		
	Sample Sample Sample	# ered-S	Ps 8		
Sample Identification	╂───	Matrix Cont			Laboratory's Sample Specific Notes:
58-11 (0-0.5')	12/9/15 9:23 liner	w soil 1			
5B-11 (2-2,5')	1 9:25 1				
58-11 (45-5')	9:26				
SB-13 (0-0.5")	16:00				
28-13 (2-2-5')	10:01				
sb-13 (4.5-5)	1 40004 V	↓ ↓			
			/		
/			/		
	/			/	
		/			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	4=HNO3;				/
Possible Hazard Identification	Skin Irritant Doison B	Unknown	Sample Disposal	Disposal By Lab	e For Months
ns/QC Requirements & Co)		
ennail results to: Skemney@	wy @ corners tore carth. com	carth.com t	Ksoenen (2) Corner	1000 Carlor (0 m)	
Relissquighed by:	Company: Cornerstone Earth Group	00 pr	Received by:		Dete/Time: 12-9-15 1520
Refinquished but	Company:		Received by.	10 the Ann	Date/Time / (2-9-(5/785-
Reh <mark>bquished by:</mark>	Company:		Received by:	Company:	Date/Time:
		-			

B

Client: Cornerstone Earth Group

Login Number: 69116 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-69116-1

List Source: TestAmerica Pleasanton

1/7/2016 Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway

Sunnyvale CA 94085

Project Name: 150 Jefferson Project #: Workorder #: 1512443A

Dear Mr. Kurt Soenen

The following report includes the data for the above referenced project for sample(s) received on 12/22/2015 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1512443A

Work Order Summary

CLIENT:	Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085	BILL TO:	Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085
PHONE:	408-245-4600 x110	P.O. #	
FAX:	408-245-4620	PROJECT #	150 Jefferson
DATE RECEIVED: DATE COMPLETED:	12/22/2015 01/07/2016	CONTACT:	Kyle Vagadori
	01/07/2010		
FRACTION # NA	ME	TEST TO-15	RECEIPT <u>VAC./PRES.</u> 2.6 "Hg

				1 HEBD CHE
01A	SV-9	TO-15	2.6 "Hg	15.1 psi
02A	SV-10	TO-15	1.2 "Hg	14.9 psi
03A	SV-7A	TO-15	3.9 "Hg	14.5 psi
04A	SV-2A	TO-15	3.9 "Hg	15 psi
05A	SV-3A	TO-15	3.5 "Hg	15 psi
06A	SV-3A(DUP)	TO-15	3.5 "Hg	14.7 psi
07A	Lab Blank	TO-15	NA	NA
07B	Lab Blank	TO-15	NA	NA
08A	CCV	TO-15	NA	NA
08B	CCV	TO-15	NA	NA
09A	LCS	TO-15	NA	NA
09AA	LCSD	TO-15	NA	NA
09B	LCS	TO-15	NA	NA
09BB	LCSD	TO-15	NA	NA

layes

DATE: <u>01/07/16</u>

FINAL PRESSURE

Technical Director

CERTIFIED BY:

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563

(916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Cornerstone Earth Group Workorder# 1512443A

Six 1 Liter Summa Canister samples were received on December 22, 2015. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-9

Lab ID#: 1512443A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Hexane	1.1	2.1	3.9	7.4
Cyclohexane	1.1	2.0	3.8	7.0
2,2,4-Trimethylpentane	1.1	4.5	5.2	21
Benzene	1.1	1.3	3.5	4.2
Heptane	1.1	8.1	4.5	33
Toluene	1.1	8.7	4.2	33
Tetrachloroethene	1.1	1.4	7.5	9.3
Ethyl Benzene	1.1	31	4.8	130
m,p-Xylene	1.1	150	4.8	650
o-Xylene	1.1	35	4.8	150
Cumene	1.1	4.3	5.4	21
Propylbenzene	1.1	5.1	5.4	25
4-Ethyltoluene	1.1	16	5.4	80
1,3,5-Trimethylbenzene	1.1	5.0	5.4	25
1,2,4-Trimethylbenzene	1.1	14	5.4	69

Client Sample ID: SV-10

Lab ID#: 1512443A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.2	16	7.9	29
Acetone	10	11	25	26
2-Propanol	4.2	52	10	130
Carbon Disulfide	4.2	6.7	13	21
Hexane	1.0	1.1	3.7	4.0
Cyclohexane	1.0	1.5	3.6	5.2
2,2,4-Trimethylpentane	1.0	2.6	4.9	12
Heptane	1.0	4.4	4.3	18
Toluene	1.0	8.5	4.0	32
Ethyl Benzene	1.0	26	4.6	110
m,p-Xylene	1.0	140	4.6	590
o-Xylene	1.0	36	4.6	160
Cumene	1.0	5.3	5.2	26

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-10

Lab ID#: 1512443A-02A				
Propylbenzene	1.0	7.4	5.2	36
4-Ethyltoluene	1.0	24	5.2	120
1,3,5-Trimethylbenzene	1.0	7.4	5.2	36
1,2,4-Trimethylbenzene	1.0	22	5.2	110
Pentane	4.2	60	12	180

Client Sample ID: SV-7A

Lab ID#: 1512443A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.6	9.0	8.6	17
Freon 113	1.1	6.5	8.7	50
1,1-Dichloroethene	1.1	1.2	4.5	4.8
Acetone	11	23	27	54
2-Propanol	4.6	13	11	31
2-Butanone (Methyl Ethyl Ketone)	4.6	4.7	13	14
1,1,1-Trichloroethane	1.1	8.3	6.2	45
Benzene	1.1	7.3	3.6	23
Heptane	1.1	1.4	4.7	5.8
Toluene	1.1	6.3	4.3	24
Tetrachloroethene	1.1	1.4	7.7	9.8
Ethyl Benzene	1.1	12	4.9	52
m,p-Xylene	1.1	61	5.0	260
o-Xylene	1.1	16	5.0	71
Cumene	1.1	2.0	5.6	9.9
Propylbenzene	1.1	2.2	5.6	10
4-Ethyltoluene	1.1	6.8	5.6	33
1,3,5-Trimethylbenzene	1.1	2.2	5.6	11
1,2,4-Trimethylbenzene	1.1	4.6	5.6	22
Pentane	4.6	5.0	13	15

Client Sample ID: SV-2A

Lab ID#: 1512443A-04A

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-2A

Lab ID#: 1512443A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	4.6	7.2	11	18
Benzene	1.2	3.1	3.7	9.9
Toluene	1.2	1.9	4.4	7.3
Ethyl Benzene	1.2	5.8	5.0	25
m,p-Xylene	1.2	31	5.0	140
o-Xylene	1.2	9.2	5.0	40
Propylbenzene	1.2	1.2	5.7	6.0
4-Ethyltoluene	1.2	4.2	5.7	20
1,3,5-Trimethylbenzene	1.2	1.5	5.7	7.6
1,2,4-Trimethylbenzene	1.2	3.7	5.7	18

Client Sample ID: SV-3A

Lab ID#: 1512443A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	4.6	4.8	11	12
1,1,1-Trichloroethane	1.1	1.2	6.2	6.3
Benzene	1.1	4.1	3.6	13
Toluene	1.1	2.1	4.3	7.8
Tetrachloroethene	1.1	4.2	7.8	29
Ethyl Benzene	1.1	2.6	5.0	12
m,p-Xylene	1.1	13	5.0	55
o-Xylene	1.1	4.2	5.0	18
4-Ethyltoluene	1.1	2.6	5.6	13
1,2,4-Trimethylbenzene	1.1	2.9	5.6	14
Pentane	4.6	6.1	14	18

Client Sample ID: SV-3A(DUP)

Lab ID#: 1512443A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.1	4.2	3.6	14
Toluene	1.1	1.8	4.2	6.9

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-3A(DUP)

Lab ID#: 1512443A-06A				
Tetrachloroethene	1.1	4.0	7.7	27
Ethyl Benzene	1.1	2.0	4.9	8.7
m,p-Xylene	1.1	9.3	4.9	40
o-Xylene	1.1	3.4	4.9	15
4-Ethyltoluene	1.1	2.0	5.6	10
1,2,4-Trimethylbenzene	1.1	2.3	5.6	11
Pentane	4.5	20	13	58

Client Sample ID: SV-9 Lab ID#: 1512443A-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122920 2.22		of Collection: 12/ of Analysis: 12/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.5	Not Detected
Freon 114	1.1	Not Detected	7.8	Not Detected
Chloromethane	11	Not Detected	23	Not Detected
/inyl Chloride	1.1	Not Detected	2.8	Not Detected
I,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	11	Not Detected	43	Not Detected
Chloroethane	4.4	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.2	Not Detected
Ethanol	4.4	Not Detected	8.4	Not Detected
Freon 113	1.1	Not Detected	8.5	Not Detected
,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Acetone	11	Not Detected	26	Not Detected
2-Propanol	4.4	Not Detected	11	Not Detected
Carbon Disulfide	4.4	Not Detected	14	Not Detected
B-Chloropropene	4.4	Not Detected	14	Not Detected
Aethylene Chloride	11	Not Detected	38	Not Detected
Aethyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
ans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
lexane	1.1	2.1	3.9	7.4
,1-Dichloroethane	1.1	Not Detected	4.5	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.4	Not Detected	13	Not Detected
sis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
etrahydrofuran	1.1	Not Detected	3.3	Not Detected
Chloroform	1.1	Not Detected	5.4	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.0	Not Detected
	1.1	2.0	3.8	7.0
Cyclohexane				
Carbon Tetrachloride	1.1	Not Detected	7.0	Not Detected
2,2,4-Trimethylpentane	1.1	4.5	5.2	21 4.2
Benzene	1.1	1.3 Not Detected	3.5	
,2-Dichloroethane	1.1	Not Detected	4.5	Not Detected
leptane	1.1	8.1	4.5	33
richloroethene	1.1	Not Detected	6.0	Not Detected
,2-Dichloropropane	1.1	Not Detected	5.1	Not Detected
,4-Dioxane	4.4	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.4	Not Detected
sis-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
I-MethyI-2-pentanone	1.1	Not Detected	4.5	Not Detected
Foluene	1.1	8.7	4.2	33
rans-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
I,1,2-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Tetrachloroethene	1.1	1.4	7.5	9.3
2-Hexanone	4.4	Not Detected	18	Not Detected

Client Sample ID: SV-9 Lab ID#: 1512443A-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j122920 Date of Collection: 12/18/15 2.22 Date of Analysis: 12/29/15 11			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.4	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.5	Not Detected
Chlorobenzene	1.1	Not Detected	5.1	Not Detected
Ethyl Benzene	1.1	31	4.8	130
m,p-Xylene	1.1	150	4.8	650
o-Xylene	1.1	35	4.8	150
Styrene	1.1	Not Detected	4.7	Not Detected
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	4.3	5.4	21
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.6	Not Detected
Propylbenzene	1.1	5.1	5.4	25
4-Ethyltoluene	1.1	16	5.4	80
1,3,5-Trimethylbenzene	1.1	5.0	5.4	25
1,2,4-Trimethylbenzene	1.1	14	5.4	69
1,3-Dichlorobenzene	1.1	Not Detected	6.7	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.7	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.7	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.7	Not Detected
1,2,4-Trichlorobenzene	4.4	Not Detected	33	Not Detected
Hexachlorobutadiene	4.4	Not Detected	47	Not Detected
Pentane	4.4	Not Detected	13	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SV-10 Lab ID#: 1512443A-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122921 2.10		of Collection: 12/ of Analysis: 12/3	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.0	Not Detected	5.2	Not Detected
Freon 114	1.0	Not Detected	7.3	Not Detected
Chloromethane	10	Not Detected	22	Not Detected
/inyl Chloride	1.0	Not Detected	2.7	Not Detected
I,3-Butadiene	1.0	Not Detected	2.3	Not Detected
Bromomethane	10	Not Detected	41	Not Detected
Chloroethane	4.2	Not Detected	11	Not Detected
Freon 11	1.0	Not Detected	5.9	Not Detected
Ethanol	4.2	16	7.9	29
Freon 113	1.0	Not Detected	8.0	Not Detected
,1-Dichloroethene	1.0	Not Detected	4.2	Not Detected
Acetone	10	11	25	26
2-Propanol	4.2	52	10	130
Carbon Disulfide	4.2	6.7	13	21
3-Chloropropene	4.2	Not Detected	13	Not Detected
Methylene Chloride	10	Not Detected	36	Not Detected
Methyl tert-butyl ether	1.0	Not Detected	3.8	Not Detected
rans-1,2-Dichloroethene	1.0	Not Detected	4.2	Not Detected
lexane	1.0	1.1	3.7	4.0
,1-Dichloroethane	1.0	Not Detected	4.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.2	Not Detected	12	Not Detected
sis-1,2-Dichloroethene	1.0	Not Detected	4.2	Not Detected
Fetrahydrofuran	1.0	Not Detected	3.1	Not Detected
Chloroform	1.0	Not Detected	5.1	Not Detected
I,1,1-Trichloroethane	1.0	Not Detected	5.7	Not Detected
Cyclohexane	1.0	1.5	3.6	5.2
Carbon Tetrachloride	1.0	Not Detected	6.6	Not Detected
2,2,4-Trimethylpentane	1.0	2.6	4.9	12
Benzene	1.0	Not Detected	3.4	Not Detected
,2-Dichloroethane	1.0	Not Detected	4.2	Not Detected
,	1.0	4.4	4.3	18
leptane Trichloroethene	1.0	Not Detected	4.3 5.6	Not Detected
,2-Dichloropropane	1.0 4.2	Not Detected Not Detected	4.8 15	Not Detected Not Detected
,4-Dioxane	4.2	Not Detected	7.0	Not Detected
Bromodichloromethane				
sis-1,3-Dichloropropene	1.0	Not Detected	4.8	Not Detected
I-Methyl-2-pentanone	1.0	Not Detected	4.3	Not Detected
Foluene	1.0	8.5	4.0	32 Not Data at a d
rans-1,3-Dichloropropene	1.0	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	1.0	Not Detected	5.7	Not Detected
Tetrachloroethene	1.0	Not Detected	7.1	Not Detected
2-Hexanone	4.2	Not Detected	17	Not Detected

Client Sample ID: SV-10 Lab ID#: 1512443A-02A EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name: Dil. Factor:	j122921 2.10			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.0	Not Detected	8.9	Not Detected
1,2-Dibromoethane (EDB)	1.0	Not Detected	8.1	Not Detected
Chlorobenzene	1.0	Not Detected	4.8	Not Detected
Ethyl Benzene	1.0	26	4.6	110
m,p-Xylene	1.0	140	4.6	590
o-Xylene	1.0	36	4.6	160
Styrene	1.0	Not Detected	4.5	Not Detected
Bromoform	1.0	Not Detected	11	Not Detected
Cumene	1.0	5.3	5.2	26
1,1,2,2-Tetrachloroethane	1.0	Not Detected	7.2	Not Detected
Propylbenzene	1.0	7.4	5.2	36
4-Ethyltoluene	1.0	24	5.2	120
1,3,5-Trimethylbenzene	1.0	7.4	5.2	36
1,2,4-Trimethylbenzene	1.0	22	5.2	110
1,3-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
alpha-Chlorotoluene	1.0	Not Detected	5.4	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,2,4-Trichlorobenzene	4.2	Not Detected	31	Not Detected
Hexachlorobutadiene	4.2	Not Detected	45	Not Detected
Pentane	4.2	60	12	180

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SV-7A Lab ID#: 1512443A-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122922 2.28		of Collection: 12/ of Analysis: 12/3	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.6	Not Detected
Freon 114	1.1	Not Detected	8.0	Not Detected
Chloromethane	11	Not Detected	24	Not Detected
Vinyl Chloride	1.1	Not Detected	2.9	Not Detected
1,3-Butadiene	1.1	Not Detected	2.5	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.4	Not Detected
Ethanol	4.6	9.0	8.6	17
Freon 113	1.1	6.5	8.7	50
I,1-Dichloroethene	1.1	1.2	4.5	4.8
Acetone	11	23	27	54
2-Propanol	4.6	13	11	31
Carbon Disulfide	4.6	Not Detected	14	Not Detected
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected
rans-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Hexane	1.1	Not Detected	4.0	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	4.7	13	14
cis-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.4	Not Detected
Chloroform	1.1	Not Detected	5.6	Not Detected
1,1,1-Trichloroethane	1.1	8.3	6.2	45
Cyclohexane	1.1	Not Detected	3.9	Not Detected
Carbon Tetrachloride	1.1	Not Detected	7.2	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.3	Not Detected
Benzene	1.1	7.3	3.6	23
1,2-Dichloroethane	1.1	Not Detected	4.6	Not Detected
Heptane	1.1	1.4	4.7	5.8
Trichloroethene	1.1	Not Detected	6.1	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.3	Not Detected
I,4-Dioxane	4.6	Not Detected	16	Not Detected
3romodichloromethane	1.1	Not Detected	7.6	Not Detected
	1.1	Not Detected	5.2	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.2 4.7	Not Detected
1-Methyl-2-pentanone	1.1	6.3	4.7	Not Detected
Foluene			4.3 5.2	24 Not Detected
rans-1,3-Dichloropropene	1.1 1.1	Not Detected Not Detected	5.2 6.2	Not Detected
1,1,2-Trichloroethane				
Tetrachloroethene	1.1	1.4	7.7	9.8 Not Data ato d
2-Hexanone	4.6	Not Detected	19	Not Detected

Client Sample ID: SV-7A Lab ID#: 1512443A-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j122922 Date of Collection: 12/21/15 9 2.28 Date of Analysis: 12/30/15 12			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.7	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.8	Not Detected
Chlorobenzene	1.1	Not Detected	5.2	Not Detected
Ethyl Benzene	1.1	12	4.9	52
m,p-Xylene	1.1	61	5.0	260
o-Xylene	1.1	16	5.0	71
Styrene	1.1	Not Detected	4.8	Not Detected
Bromoform	1.1	Not Detected	12	Not Detected
Cumene	1.1	2.0	5.6	9.9
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.8	Not Detected
Propylbenzene	1.1	2.2	5.6	10
4-Ethyltoluene	1.1	6.8	5.6	33
1,3,5-Trimethylbenzene	1.1	2.2	5.6	11
1,2,4-Trimethylbenzene	1.1	4.6	5.6	22
1,3-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.9	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Pentane	4.6	5.0	13	15

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SV-2A Lab ID#: 1512443A-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122923 2.32		of Collection: 12/ of Analysis: 12/3	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	5.7	Not Detected
Freon 114	1.2	Not Detected	8.1	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	45	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.2	Not Detected	6.5	Not Detected
Ethanol	4.6	Not Detected	8.7	Not Detected
Freon 113	1.2	Not Detected	8.9	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Acetone	12	Not Detected	28	Not Detected
2-Propanol	4.6	7.2	11	18
Carbon Disulfide	4.6	Not Detected	14	Not Detected
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	12	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
rans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Hexane	1.2	Not Detected	4.1	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.4	Not Detected
Chloroform	1.2	Not Detected	5.7	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.3	Not Detected
Cyclohexane	1.2	Not Detected	4.0	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.3	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.4	Not Detected
Benzene	1.2	3.1	3.7	9.9
1,2-Dichloroethane	1.2	Not Detected	4.7	Not Detected
	1.2	Not Detected	4.8	Not Detected
Heptane Trichloroethene	1.2	Not Detected	6.2	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane	4.6	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	7.8	Not Detected
	1.2	Not Detected	5.3	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.3 4.8	Not Detected
4-Methyl-2-pentanone	1.2	1.9	4.0 4.4	7.3
Foluene	1.2	Not Detected	4.4 5.3	Not Detected
trans-1,3-Dichloropropene	1.2	Not Detected	5.3 6.3	Not Detected
1,1,2-Trichloroethane				
Tetrachloroethene	1.2	Not Detected	7.9	Not Detected
2-Hexanone	4.6	Not Detected	19	Not Detected

Client Sample ID: SV-2A Lab ID#: 1512443A-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j122923 Date of Collection: 12/21/15 10:3 2.32 Date of Analysis: 12/30/15 01:25			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	9.9	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	8.9	Not Detected
Chlorobenzene	1.2	Not Detected	5.3	Not Detected
Ethyl Benzene	1.2	5.8	5.0	25
m,p-Xylene	1.2	31	5.0	140
o-Xylene	1.2	9.2	5.0	40
Styrene	1.2	Not Detected	4.9	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.7	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.0	Not Detected
Propylbenzene	1.2	1.2	5.7	6.0
4-Ethyltoluene	1.2	4.2	5.7	20
1,3,5-Trimethylbenzene	1.2	1.5	5.7	7.6
1,2,4-Trimethylbenzene	1.2	3.7	5.7	18
1,3-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.0	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Pentane	4.6	Not Detected	14	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SV-3A Lab ID#: 1512443A-05A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122924 2.29		of Collection: 12/ of Analysis: 12/3	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.7	Not Detected
Freon 114	1.1	Not Detected	8.0	Not Detected
Chloromethane	11	Not Detected	24	Not Detected
√inyl Chloride	1.1	Not Detected	2.9	Not Detected
1,3-Butadiene	1.1	Not Detected	2.5	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.4	Not Detected
Ethanol	4.6	Not Detected	8.6	Not Detected
Freon 113	1.1	Not Detected	8.8	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Acetone	11	Not Detected	27	Not Detected
2-Propanol	4.6	4.8	11	12
Carbon Disulfide	4.6	Not Detected	14	Not Detected
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected
rans-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Hexane	1.1	Not Detected	4.0	Not Detected
I,1-Dichloroethane	1.1	Not Detected	4.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	4.0	Not Detected	4.5	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.4	Not Detected
Chloroform	1.1	Not Detected	5.6	Not Detected
I,1,1-Trichloroethane	1.1	1.2	6.2	6.3
			3.9	
	1.1	Not Detected		Not Detected
Carbon Tetrachloride	1.1	Not Detected	7.2	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.3	Not Detected
Benzene	1.1	4.1	3.6	13 Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.6	
Heptane	1.1	Not Detected	4.7	Not Detected
Trichloroethene	1.1	Not Detected	6.2	Not Detected
I,2-Dichloropropane	1.1	Not Detected	5.3	Not Detected
1,4-Dioxane	4.6	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.7	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.2	Not Detected
1-Methyl-2-pentanone	1.1	Not Detected	4.7	Not Detected
Toluene	1.1	2.1	4.3	7.8
rans-1,3-Dichloropropene	1.1	Not Detected	5.2	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Tetrachloroethene	1.1	4.2	7.8	29
2-Hexanone	4.6	Not Detected	19	Not Detected

Client Sample ID: SV-3A Lab ID#: 1512443A-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j122924 2.29	Date of Collection: 12/21/15 11:44 Date of Analysis: 12/30/15 01:52 A		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.8	Not Detected
,2-Dibromoethane (EDB)	1.1	Not Detected	8.8	Not Detected
Chlorobenzene	1.1	Not Detected	5.3	Not Detected
Ethyl Benzene	1.1	2.6	5.0	12
n,p-Xylene	1.1	13	5.0	55
o-Xylene	1.1	4.2	5.0	18
Styrene	1.1	Not Detected	4.9	Not Detected
Bromoform	1.1	Not Detected	12	Not Detected
Cumene	1.1	Not Detected	5.6	Not Detected
,1,2,2-Tetrachloroethane	1.1	Not Detected	7.9	Not Detected
Propylbenzene	1.1	Not Detected	5.6	Not Detected
I-Ethyltoluene	1.1	2.6	5.6	13
,3,5-Trimethylbenzene	1.1	Not Detected	5.6	Not Detected
,2,4-Trimethylbenzene	1.1	2.9	5.6	14
,3-Dichlorobenzene	1.1	Not Detected	6.9	Not Detected
,4-Dichlorobenzene	1.1	Not Detected	6.9	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.9	Not Detected
,2-Dichlorobenzene	1.1	Not Detected	6.9	Not Detected
,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Pentane	4.6	6.1	14	18

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SV-3A(DUP) Lab ID#: 1512443A-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j123012 2.26		of Collection: 12/ of Analysis: 12/3	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.6	Not Detected
Freon 114	1.1	Not Detected	7.9	Not Detected
Chloromethane	11	Not Detected	23	Not Detected
√inyl Chloride	1.1	Not Detected	2.9	Not Detected
1,3-Butadiene	1.1	Not Detected	2.5	Not Detected
Bromomethane	11	Not Detected	44	Not Detected
Chloroethane	4.5	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.3	Not Detected
Ethanol	4.5	Not Detected	8.5	Not Detected
Freon 113	1.1	Not Detected	8.7	Not Detected
I,1-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Acetone	11	Not Detected	27	Not Detected
2-Propanol	4.5	Not Detected	11	Not Detected
Carbon Disulfide	4.5	Not Detected	14	Not Detected
B-Chloropropene	4.5	Not Detected	14	Not Detected
Methylene Chloride	11	Not Detected	39	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected
rans-1,2-Dichloroethene	1.1	Not Detected	4.1	Not Detected
lexane	1.1	Not Detected	4.0	Not Detected
,1-Dichloroethane	1.1	Not Detected	4.6	Not Detected
		Not Detected	13	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.5 1.1	Not Detected		Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Fetrahydrofuran	1.1	Not Detected	3.3	
Chloroform			5.5	Not Detected
I,1,1-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Cyclohexane	1.1	Not Detected	3.9	Not Detected
Carbon Tetrachloride	1.1	Not Detected	7.1	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.3	Not Detected
Benzene	1.1	4.2	3.6	14
,2-Dichloroethane	1.1	Not Detected	4.6	Not Detected
leptane	1.1	Not Detected	4.6	Not Detected
Frichloroethene	1.1	Not Detected	6.1	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.2	Not Detected
1,4-Dioxane	4.5	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.6	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.1	Not Detected
1-Methyl-2-pentanone	1.1	Not Detected	4.6	Not Detected
Toluene	1.1	1.8	4.2	6.9
rans-1,3-Dichloropropene	1.1	Not Detected	5.1	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Tetrachloroethene	1.1	4.0	7.7	27
2-Hexanone	4.5	Not Detected	18	Not Detected

Client Sample ID: SV-3A(DUP) Lab ID#: 1512443A-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j123012 2.26	Date of Collection: 12/21/15 11: Date of Analysis: 12/30/15 06:15		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.6	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.7	Not Detected
Chlorobenzene	1.1	Not Detected	5.2	Not Detected
Ethyl Benzene	1.1	2.0	4.9	8.7
m,p-Xylene	1.1	9.3	4.9	40
o-Xylene	1.1	3.4	4.9	15
Styrene	1.1	Not Detected	4.8	Not Detected
Bromoform	1.1	Not Detected	12	Not Detected
Cumene	1.1	Not Detected	5.6	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.8	Not Detected
Propylbenzene	1.1	Not Detected	5.6	Not Detected
4-Ethyltoluene	1.1	2.0	5.6	10
1,3,5-Trimethylbenzene	1.1	Not Detected	5.6	Not Detected
1,2,4-Trimethylbenzene	1.1	2.3	5.6	11
1,3-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.8	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,2,4-Trichlorobenzene	4.5	Not Detected	34	Not Detected
Hexachlorobutadiene	4.5	Not Detected	48	Not Detected
Pentane	4.5	20	13	58

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: Lab Blank Lab ID#: 1512443A-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122909a 1.00		of Collection: NA of Analysis: 12/2	0/15 03·00 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
/inyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
rans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Fetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Foluene	0.50	Not Detected	1.9	Not Detected
rans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.3	Not Detected
	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene 2-Hexanone	2.0	Not Detected	3.4 8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1512443A-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j122909a 1.00	Date of Collection: NA Date of Analysis: 12/29/15 03		9/15 03:00 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Pentane	2.0	Not Detected	5.9	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: Lab Blank Lab ID#: 1512443A-07B EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j123011a 1.00		of Collection: NA of Analysis: 12/3	0/15 04·53 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1512443A-07B EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j123011a 1.00		ate of Collection: NA ate of Analysis: 12/30/15 04:53 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Pentane	2.0	Not Detected	5.9	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1512443A-08A EPA METHOD TO-15 GC/MS FULL SCAN

٦

Dil. Factor:	j122905 1.00	Date of Collection: NA Date of Analysis: 12/29/15 11:28 AM
Compound	%Recove	ry
Freon 12	110	
Freon 114	111	
Chloromethane	109	
Vinyl Chloride	110	
1,3-Butadiene	113	
Bromomethane	112	
Chloroethane	111	
Freon 11	111	
Ethanol	111	
Freon 113	111	
1,1-Dichloroethene	115	
Acetone	105	
2-Propanol	114	
Carbon Disulfide	111	
3-Chloropropene	110	
Methylene Chloride	113	
Methyl tert-butyl ether	116	
trans-1,2-Dichloroethene	111	
Hexane	115	
1,1-Dichloroethane	112	
2-Butanone (Methyl Ethyl Ketone)	112	
cis-1,2-Dichloroethene	112	
Tetrahydrofuran	116	
Chloroform	112	
1,1,1-Trichloroethane	113	
Cyclohexane	116	
Carbon Tetrachloride	113	
2,2,4-Trimethylpentane	119	
Benzene	113	
1,2-Dichloroethane	113	
Heptane	115	
Trichloroethene	110	
1,2-Dichloropropane	109	
1,4-Dioxane	109	
Bromodichloromethane	112	
cis-1,3-Dichloropropene	117	
4-Methyl-2-pentanone	112	
Toluene	111	
trans-1,3-Dichloropropene	115	
1,1,2-Trichloroethane	110	
Tetrachloroethene	111	
2-Hexanone	106	

Client Sample ID: CCV Lab ID#: 1512443A-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122905 1.00	Date of Collection: NA Date of Analysis: 12/29/15 11	:28 AM
Compound		%Recovery	
Dibromochloromethane		113	
1,2-Dibromoethane (EDB)		112	
Chlorobenzene		110	
Ethyl Benzene		113	
m,p-Xylene		115	
o-Xylene		116	
Styrene		115	
Bromoform		112	
Cumene		114	
1,1,2,2-Tetrachloroethane		111	
Propylbenzene		115	
4-Ethyltoluene		115	
1,3,5-Trimethylbenzene		116	
1,2,4-Trimethylbenzene		118	
1,3-Dichlorobenzene		112	
1,4-Dichlorobenzene		112	
alpha-Chlorotoluene		108	
1,2-Dichlorobenzene		112	
1,2,4-Trichlorobenzene		118	
Hexachlorobutadiene		115	
Pentane		76	

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1512443A-08B EPA METHOD TO-15 GC/MS FULL SCAN

<u>PA METHOD TO-15 GC/MS F</u>	ULL SCAN		
File Name: j123002 Date of Collection: NA			
1.00	Date of Analysis: 12/30/15 11:43 AM		
%Reco	overy		
114	4		
11:	3		
110	0		
112			
114			
114	4		
112	2		
114	4		
108			
115	5		
114	4		
105	5		
112	2		
112	2		
107	7		
11'	1		
114	4		
11(0		
114	4		
11:	3		
108	8		
114	4		
11:	3		
112	2		
112	2		
115	5		
113	3		
99)		
11(0		
111	1		
107	7		
107			
106	6		
106	6		
111	1		
115	5		
109			
108			
108			
	2		
112	2 7		
-	%Recc 114 113 114 111 114 114 114 114 114 115 116 117 118 119 111		

Client Sample ID: CCV Lab ID#: 1512443A-08B EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j123002	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 12/30/15 11:43 A	M
Compound		%Recovery	
Dibromochloromethane		111	
1,2-Dibromoethane (EDB)		110	
Chlorobenzene		108	
Ethyl Benzene		109	
m,p-Xylene		111	
o-Xylene		112	
Styrene		112	
Bromoform		109	
Cumene		110	
1,1,2,2-Tetrachloroethane		108	
Propylbenzene		111	
4-Ethyltoluene		114	
1,3,5-Trimethylbenzene		112	
1,2,4-Trimethylbenzene		114	
1,3-Dichlorobenzene		110	
1,4-Dichlorobenzene		112	
alpha-Chlorotoluene		106	
1,2-Dichlorobenzene		110	
1,2,4-Trichlorobenzene		115	
Hexachlorobutadiene		112	
Pentane		74	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS Lab ID#: 1512443A-09A EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name:	j122903	Date of Collection: NA		
Dil. Factor:	-	Date of Analysis: 12/29/15 10:20 AM		
		Method		
Compound	%Recovery	Limits		
Freon 12	113	70-130		
Freon 114	115	70-130		
Chloromethane	110	70-130		
Vinyl Chloride	111	70-130		
1,3-Butadiene	109	70-130		
Bromomethane	110	70-130		
Chloroethane	114	70-130		
Freon 11	113	70-130		
Ethanol	110	70-130		
Freon 113	110	70-130		
1,1-Dichloroethene	113	70-130		
Acetone	100	70-130		
2-Propanol	114	70-130		
Carbon Disulfide	96	70-130		
3-Chloropropene	104	70-130		
Methylene Chloride	108	70-130		
Methyl tert-butyl ether	111	70-130		
trans-1,2-Dichloroethene	113	70-130		
Hexane	113	70-130		
1,1-Dichloroethane	110	70-130		
2-Butanone (Methyl Ethyl Ketone)	111	70-130		
cis-1,2-Dichloroethene	108	70-130		
Tetrahydrofuran	110	70-130		
Chloroform	109	70-130		
1,1,1-Trichloroethane	109	70-130		
Cyclohexane	114	70-130		
Carbon Tetrachloride	111	70-130		
2,2,4-Trimethylpentane	114	70-130		
Benzene	109	70-130		
1,2-Dichloroethane	109	70-130		
Heptane	110	70-130		
Trichloroethene	105	70-130		
1,2-Dichloropropane	105	70-130		
1,4-Dioxane	106	70-130		
Bromodichloromethane	111	70-130		
cis-1,3-Dichloropropene	106	70-130		
4-Methyl-2-pentanone	108	70-130		
Toluene	106	70-130		
trans-1,3-Dichloropropene	112	70-130		
1,1,2-Trichloroethane	106	70-130		
Tetrachloroethene	109	70-130		
	100	70-100		

Client Sample ID: LCS Lab ID#: 1512443A-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j12 Dil. Factor:		Date of Collection: NA Date of Analysis: 12/29/15 10:20 AM	
Compound	%Recovery	Method Limits	
Dibromochloromethane	111	70-130	
1,2-Dibromoethane (EDB)	110	70-130	
Chlorobenzene	106	70-130	
Ethyl Benzene	109	70-130	
m,p-Xylene	109	70-130	
o-Xylene	114	70-130	
Styrene	118	70-130	
Bromoform	112	70-130	
Cumene	110	70-130	
1,1,2,2-Tetrachloroethane	109	70-130	
Propylbenzene	112	70-130	
4-Ethyltoluene	113	70-130	
1,3,5-Trimethylbenzene	113	70-130	
1,2,4-Trimethylbenzene	112	70-130	
1,3-Dichlorobenzene	109	70-130	
1,4-Dichlorobenzene	107	70-130	
alpha-Chlorotoluene	118	70-130	
1,2-Dichlorobenzene	109	70-130	
1,2,4-Trichlorobenzene	114	70-130	
Hexachlorobutadiene	112	70-130	
Pentane	Not Spiked		

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCSD Lab ID#: 1512443A-09AA EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j122904 Date of Collect 1.00 Date of Analys	tion: NA sis: 12/29/15 10:44 AM
		Method
Compound	%Recovery	Limits
Freon 12	108	70-130
Freon 114	110	70-130
Chloromethane	104	70-130
Vinyl Chloride	104	70-130
1,3-Butadiene	104	70-130
Bromomethane	104	70-130
Chloroethane	108	70-130
Freon 11	107	70-130
Ethanol	105	70-130
Freon 113	105	70-130
1,1-Dichloroethene	106	70-130
Acetone	97	70-130
2-Propanol	110	70-130
Carbon Disulfide	90	70-130
3-Chloropropene	99	70-130
Methylene Chloride	105	70-130
Methyl tert-butyl ether	106	70-130
trans-1,2-Dichloroethene	105	70-130
Hexane	109	70-130
1,1-Dichloroethane	105	70-130
2-Butanone (Methyl Ethyl Ketone)	103	70-130
cis-1,2-Dichloroethene	105	70-130
Tetrahydrofuran	106	70-130
Chloroform	105	70-130
1,1,1-Trichloroethane	105	70-130
Cyclohexane	109	70-130
Carbon Tetrachloride	105	70-130
2,2,4-Trimethylpentane	114	70-130
Benzene	107	70-130
1,2-Dichloroethane	106	70-130
,	109	70-130
Heptane	109	
Trichloroethene	104	70-130 70-130
1,2-Dichloropropane	104	70-130
1,4-Dioxane Bromodichloromethane	104	70-130
cis-1,3-Dichloropropene	104 108	70-130 70-130
4-Methyl-2-pentanone		
Toluene	106	70-130
trans-1,3-Dichloropropene	110 105	70-130 70-130
1,1,2-Trichloroethane		
Tetrachloroethene	106	70-130
2-Hexanone	112	70-130

Client Sample ID: LCSD Lab ID#: 1512443A-09AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j122904 Date of Collect 1.00 Date of Analy	ction: NA sis: 12/29/15 10:44 AM
Compound	%Recovery	Method Limits
Dibromochloromethane	110	70-130
1,2-Dibromoethane (EDB)	108	70-130
Chlorobenzene	105	70-130
Ethyl Benzene	108	70-130
m,p-Xylene	109	70-130
o-Xylene	113	70-130
Styrene	116	70-130
Bromoform	111	70-130
Cumene	111	70-130
1,1,2,2-Tetrachloroethane	108	70-130
Propylbenzene	112	70-130
4-Ethyltoluene	112	70-130
1,3,5-Trimethylbenzene	112	70-130
1,2,4-Trimethylbenzene	112	70-130
1,3-Dichlorobenzene	108	70-130
1,4-Dichlorobenzene	110	70-130
alpha-Chlorotoluene	117	70-130
1,2-Dichlorobenzene	109	70-130
1,2,4-Trichlorobenzene	112	70-130
Hexachlorobutadiene	111	70-130
Pentane	Not Spiked	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS Lab ID#: 1512443A-09B EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name:	j123003	Date of Collection: NA		
Dil. Factor:	1.00	Date of Analysis: 12/30/15 12:15 PM		
		Method		
Compound	%Reco	very Limits		
Freon 12	112	2 70-130		
Freon 114	113	3 70-130		
Chloromethane	108	3 70-130		
Vinyl Chloride	110) 70-130		
1,3-Butadiene	108	3 70-130		
Bromomethane	109	70-130		
Chloroethane	110) 70-130		
Freon 11	112	2 70-130		
Ethanol	105	5 70-130		
Freon 113	108	3 70-130		
1,1-Dichloroethene	111	70-130		
Acetone	98			
2-Propanol	112			
Carbon Disulfide	93			
3-Chloropropene	101			
Methylene Chloride	106	5 70-130		
Methyl tert-butyl ether	109	70-130		
trans-1,2-Dichloroethene	112	2 70-130		
Hexane	110) 70-130		
1,1-Dichloroethane	109	70-130		
2-Butanone (Methyl Ethyl Ketone)	105	5 70-130		
cis-1,2-Dichloroethene	107	70-130		
Tetrahydrofuran	108	3 70-130		
Chloroform	108	3 70-130		
1,1,1-Trichloroethane	109	9 70-130		
Cyclohexane	113	3 70-130		
Carbon Tetrachloride	108	3 70-130		
2,2,4-Trimethylpentane	113	3 70-130		
Benzene	107	7 70-130		
1,2-Dichloroethane	108	3 70-130		
Heptane	109	70-130		
Trichloroethene	105			
1,2-Dichloropropane	105			
1,4-Dioxane	104	70-130		
Bromodichloromethane	109	9 70-130		
cis-1,3-Dichloropropene	105	5 70-130		
4-Methyl-2-pentanone	108			
Toluene	106			
trans-1,3-Dichloropropene	112			
1,1,2-Trichloroethane	105			
Tetrachloroethene	107			
2-Hexanone	112			

Client Sample ID: LCS Lab ID#: 1512443A-09B EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name:	j123003	Date of Collec	tion: NA
Dil. Factor:	1.00	Date of Analys	sis: 12/30/15 12:15 PM
Compound		%Recovery	Method Limits
Dibromochloromethane		110	70-130
1,2-Dibromoethane (EDB)		109	70-130
Chlorobenzene		106	70-130
Ethyl Benzene		108	70-130
m,p-Xylene		108	70-130
o-Xylene		113	70-130
Styrene		116	70-130
Bromoform		112	70-130
Cumene		110	70-130
1,1,2,2-Tetrachloroethane		107	70-130
Propylbenzene		112	70-130
4-Ethyltoluene		112	70-130
1,3,5-Trimethylbenzene		113	70-130
1,2,4-Trimethylbenzene		113	70-130
1,3-Dichlorobenzene		110	70-130
1,4-Dichlorobenzene		108	70-130
alpha-Chlorotoluene		119	70-130
1,2-Dichlorobenzene		109	70-130
1,2,4-Trichlorobenzene		113	70-130
Hexachlorobutadiene		111	70-130
Pentane		Not Spiked	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: LCSD Lab ID#: 1512443A-09BB EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j123004 Date of Collect 1.00 Date of Analysi	ion: NA is: 12/30/15 12:41 PM
		Method
Compound	%Recovery	Limits
Freon 12	106	70-130
Freon 114	107	70-130
Chloromethane	102	70-130
Vinyl Chloride	103	70-130
1,3-Butadiene	103	70-130
Bromomethane	103	70-130
Chloroethane	106	70-130
Freon 11	105	70-130
Ethanol	101	70-130
Freon 113	103	70-130
1,1-Dichloroethene	104	70-130
Acetone	91	70-130
2-Propanol	106	70-130
Carbon Disulfide	88	70-130
3-Chloropropene	95	70-130
Methylene Chloride	102	70-130
Methyl tert-butyl ether	103	70-130
trans-1,2-Dichloroethene	103	70-130
Hexane	105	70-130
1,1-Dichloroethane	104	70-130
2-Butanone (Methyl Ethyl Ketone)	103	70-130
cis-1,2-Dichloroethene	102	70-130
Tetrahydrofuran	103	70-130
Chloroform	104	70-130
1,1,1-Trichloroethane	103	70-130
Cyclohexane	106	70-130
Carbon Tetrachloride	103	70-130
2,2,4-Trimethylpentane	116	70-130
Benzene	103	70-130
1,2-Dichloroethane	102	70-130
Heptane	106	70-130
Trichloroethene	101	70-130
1,2-Dichloropropane	100	70-130
1,4-Dioxane	100	70-130
Bromodichloromethane	105	70-130
cis-1,3-Dichloropropene	100	70-130
4-Methyl-2-pentanone	103	70-130
Toluene	102	70-130
trans-1,3-Dichloropropene	108	70-130
1,1,2-Trichloroethane	103	70-130
Tetrachloroethene	105	70-130
2-Hexanone	108	70-130

Client Sample ID: LCSD Lab ID#: 1512443A-09BB EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name:	j123004	Date of Collec		
Dil. Factor:	1.00	Date of Analys	Analysis: 12/30/15 12:41 PM	
Compound		%Recovery	Method Limits	
Dibromochloromethane		108	70-130	
1,2-Dibromoethane (EDB)		105	70-130	
Chlorobenzene		102	70-130	
Ethyl Benzene		105	70-130	
m,p-Xylene		106	70-130	
o-Xylene		112	70-130	
Styrene		114	70-130	
Bromoform		109	70-130	
Cumene		107	70-130	
1,1,2,2-Tetrachloroethane		105	70-130	
Propylbenzene		110	70-130	
4-Ethyltoluene		108	70-130	
1,3,5-Trimethylbenzene		110	70-130	
1,2,4-Trimethylbenzene		110	70-130	
1,3-Dichlorobenzene		106	70-130	
1,4-Dichlorobenzene		105	70-130	
alpha-Chlorotoluene		114	70-130	
1,2-Dichlorobenzene		106	70-130	
1,2,4-Trichlorobenzene		111	70-130	
Hexachlorobutadiene		109	70-130	
Pentane		Not Spiked		

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	101	70-130

1/7/2016 Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway

Sunnyvale CA 94085

Project Name: 150 Jefferson Project #: Workorder #: 1512443B

Dear Mr. Kurt Soenen

The following report includes the data for the above referenced project for sample(s) received on 12/22/2015 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 (5&20 ppbv) are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1512443B

Work Order Summary

CLIENT:	Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085	BILL TO:	Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085
PHONE:	408-245-4600 x110	P.O. #	
FAX:	408-245-4620	PROJECT #	150 Jefferson
DATE RECEIVED: DATE COMPLETED:	12/22/2015 01/07/2016	CONTACT:	Kyle Vagadori

FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
07A	SV-3A(Pentane)	Modified TO-15 (5&20 ppbv	3.5 "Hg	15 psi
08A	Lab Blank	Modified TO-15 (5&20 ppbv	NA	NA
09A	CCV	Modified TO-15 (5&20 ppbv	NA	NA

CERTIFIED BY:

layes

DATE: <u>01/07/16</u>

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Soil Gas Cornerstone Earth Group Workorder# 1512443B

One PAC250 Canister sample was received on December 22, 2015. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 50 mLs of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

🔅 eurofins

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on sample SV-3A(Pentane) due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SV-3A(Pentane)

Lab ID#: 1512443B-07A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Pentane	23000	200000	67000	580000

Client Sample ID: SV-3A(Pentane) Lab ID#: 1512443B-07A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14010616 1140		e of Collection: 12/2 e of Analysis: 1/6/16	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Pentane	23000	200000	67000	580000

Container Type: PAC250 Canister

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: Lab Blank Lab ID#: 1512443B-08A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14010610a 1.00		e of Collection: NA e of Analysis: 1/6/1	6 12:03 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Pentane	20	Not Detected	59	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	94	70-130

Г

Air Toxics

Client Sample ID: CCV Lab ID#: 1512443B-09A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14010606a 1.00	Date of Collec Date of Analys	tion: NA sis: 1/6/16 10:18 AM
Compound		%Recovery	
Pentane		111	
Container Type: NA - Not Ap	plicable		
Surrogates		%Recovery	Method Limits
1,2-Dichloroethane-d4		107	70-130
Toluene-d8		103	70-130
		95	70-130

1/7/2016 Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway

Sunnyvale CA 94085

Project Name: 150 Jefferson Project #: Workorder #: 1512443C

Dear Mr. Kurt Soenen

The following report includes the data for the above referenced project for sample(s) received on 12/22/2015 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1512443C

Work Order Summary

CLIENT:	Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085	BILL TO:	Mr. Kurt Soenen Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085
PHONE:	408-245-4600 x110	P.O. #	
FAX:	408-245-4620	PROJECT #	150 Jefferson
DATE RECEIVED: DATE COMPLETED:	12/22/2015 01/07/2016	CONTACT:	Kyle Vagadori

			KEUEIP I	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SV-9	Modified ASTM D-1946	2.6 "Hg	15.1 psi
02A	SV-10	Modified ASTM D-1946	1.2 "Hg	14.9 psi
03A	SV-7A	Modified ASTM D-1946	3.9 "Hg	14.5 psi
04A	SV-2A	Modified ASTM D-1946	3.9 "Hg	15 psi
05A	SV-3A	Modified ASTM D-1946	3.5 "Hg	15 psi
06A	SV-3A(DUP)	Modified ASTM D-1946	3.5 "Hg	14.7 psi
07A	Lab Blank	Modified ASTM D-1946	NA	NA
08A	LCS	Modified ASTM D-1946	NA	NA
08AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

layes

DATE: <u>01/07/16</u>

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

🛟 eurofins

LABORATORY NARRATIVE Modified ASTM D-1946 Cornerstone Earth Group Workorder# 1512443C

Six 1 Liter Summa Canister samples were received on December 22, 2015. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SV-9

Lab ID#: 1512443C-01A

Lad 1D#: 1512445C-01A		
0	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	16
Carbon Dioxide	0.022	3.4
Client Sample ID: SV-10		
Lab ID#: 1512443C-02A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.21	16
Carbon Dioxide	0.021	5.6
Client Sample ID: SV-7A		
Lab ID#: 1512443C-03A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.23	13
Carbon Dioxide	0.023	6.2
Client Sample ID: SV-2A		
Lab ID#: 1512443C-04A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.23	14
Carbon Dioxide	0.023	6.4
Client Sample ID: SV-3A		
Lab ID#: 1512443C-05A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.23	6.8
Carbon Dioxide	0.023	15

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SV-3A(DUP)

Lab ID#: 1512443C-06A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.23	6.9
Carbon Dioxide	0.023	15

Client Sample ID: SV-9 Lab ID#: 1512443C-01A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	10123010 2.22		ction: 12/18/15 7:08:00 AM /sis: 12/30/15 12:03 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.22	16
Methane		0.00022	Not Detected
Carbon Dioxide		0.022	3.4

٦

Client Sample ID: SV-10 Lab ID#: 1512443C-02A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name:	10123011		ction: 12/18/15 7:53:00 AM
Dil. Factor:	2.10		/sis: 12/30/15 12:47 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.21	16
Methane		0.00021	Not Detected
Carbon Dioxide		0.021	5.6

٦

Client Sample ID: SV-7A Lab ID#: 1512443C-03A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10123012 2.28		ction: 12/21/15 9:45:00 AM /sis: 12/30/15 01:15 PM
		Rpt. Limit (%)	Amount (%)
Oxygen Methane Carbon Dioxide		0.23 0.00023 0.023	13 Not Detected 6.2

٦

Client Sample ID: SV-2A Lab ID#: 1512443C-04A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	 Date of Collection: 12/21/15 10:31:00 A Date of Analysis: 12/30/15 03:26 PM	
	Amount (%)	
Oxygen	0.23	14
Methane	0.00023	Not Detected
Carbon Dioxide	0.023	6.4

٦

Client Sample ID: SV-3A Lab ID#: 1512443C-05A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10123014 2.28	Date of Collection: 12/21/15 11:44:00 A Date of Analysis: 12/30/15 03:48 PM	
		Rpt. Limit (%)	Amount (%)
Oxygen		0.23	6.8
Methane Carbon Dioxide		0.00023 0.023	Not Detected 15

٦

Client Sample ID: SV-3A(DUP) Lab ID#: 1512443C-06A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	 Date of Collection: 12/21/15 11:44:00 A Date of Analysis: 12/30/15 04:12 PM	
	Amount (%)	
Oxygen	0.23	6.9
Methane	0.00023	Not Detected
Carbon Dioxide	0.023	15

٦

Client Sample ID: Lab Blank Lab ID#: 1512443C-07A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor: Compound	10123004 1.00	Date of Colle Date of Analy	ction: NA /sis: 12/30/15 09:00 AM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.10	Not Detected
Methane		0.00010	Not Detected
Carbon Dioxide		0.010	Not Detected

Client Sample ID: LCS Lab ID#: 1512443C-08A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10123002 1.00	Date of Collec Date of Analys	tion: NA iis: 12/30/15 08:04 AM
		%Recovery	Method Limits
Oxygen		100	85-115
Methane		106	85-115
Carbon Dioxide		98	85-115

٦

Client Sample ID: LCSD Lab ID#: 1512443C-08AA MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10123025 1.00	Date of Collection: NA Date of Analysis: 12/30/15 09:20 PM	
		%Recovery	Method Limits
Oxygen		100	85-115
Methane		107	85-115
Carbon Dioxide		99	85-115

٦

APPENDIX E: LEVEL II DATA VALIDATION PACKAGE AND SOIL VAPOR REPORTING LIMITS

Cornerstone Earth 1259 Oakmead Parkway Sunnyvale, CA 94085 ATTN: Mr. Sean M. Kenney January 19, 2016

SUBJECT: 150 Jefferson Drive, Menlo Park, Data Validation

Dear Mr. Kenney,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on January 8, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #35700:

SDG #Fraction720-69116-1, 1512443AVolatiles, Chlorinated Pesticides, Polychlorinated1512443BBiphenyls, Lead

The data validation was performed under Level II guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA National Functional Guidelines for Superfund Organic Methods Data Review, August 2014
- USEPA National Functional Guidelines for Inorganic Superfund Data Review, January 2014
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007

Please feel free to contact us if you have any questions.

Sincerely,

1 Ju Cun

Shauna McKellar Project Manager/Chemist

1	83 Pages-SF	2 Week					,						Atta	chme	ent 1												-						
	Level II		LDC #	357	00	(Co	rne	rsto	one	Ea	rth -	- Su	nny	/val	e, C) A	150) Je	ffer	sor	ו Dr	ive	, Me	enlo) Pa	rk)							
LDC	SDG#	DATE REC'D	(3) DATE DUE	V((ТО	DA -15)	Pe (808		PC (80		P (601	b 0B)																						
Matrix:	Air/Water/Soil		(.). (.).	A	s	w	s	w	s	w	s	w	s	W	s	w	s	w	s	w	s	W	s	w	s	w	S	w	s	W	s	w	s
A	720-69116-1	01/08/16	01/22/16	-	-	1	7	1	7	0	3																						
В	1512443A	01/08/16	01/22/16	6	0	-	-	-		-	-	L																					
С	1512443B	01/08/16	01/22/16	1	0	-	-	-	-	-	-																						
				 																													
			<u> </u>								ļ																						
						<u> </u>			L			<u> </u>																					
			<u> </u>			<u> </u>						L	<u> </u>		L																		
									L																								
									L			<u> </u>													L			L	_				
 			ļ						L_			ļ						_							L_								
									L																								
				<u> </u>																													
						ļ						<u> </u>				<u> </u>																	
						<u> </u>																			<u> </u>								
[· · · · · · · · · · · · · · · · · · ·					<u> </u>					ļ	<u> </u>			ļ										<u> </u>				<u> </u>]	
				<u> </u>	<u> </u>	 			<u> </u>		ļ																					I	\square
			<u> </u>			<u> </u>		 	<u> </u>			<u> </u>												<u> </u>	<u> </u>								
				ļ	<u> </u>	ļ						<u> </u>	 												L								
			ļ	ļ		ļ			ļ			<u> </u>	ļ												<u> </u>								
				<u> </u>					<u> </u>					<u> </u>		<u> </u>					ļ												
		<u> </u>	<u> </u>	 		ļ			 	<u> </u>	<u> </u>	<u> </u>	 		<u> </u>	<u> </u>	 					┞——			┣		<u> </u>	<u> </u>	<u> </u>		\square		\parallel
		<u> </u>										ļ			<u> </u>		 					<u> </u>			<u> </u>		<u> </u>						
		<u> </u>		 		 	 		 	<u> </u>		<u> </u>	ļ		 		 		 		<u> </u>				L			 _		 	\square		$\left\ \right\ $
		1	ļ	_	_	 	 	<u> </u>	<u> </u>	<u> </u>		<u> </u>					<u> </u>				L					<u> </u>		L			\square	<u> </u>	\parallel
				ļ	<u> </u>	<u> </u>		<u> </u>		<u> </u>	ļ	 			-		 					 	 		┞	<u> </u>		 _ _	<u> </u>	 	\square		↓∥
				<u> </u>	 	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>				<u> </u>	<u> </u>		<u> </u>	L	<u> </u>		<u> </u>	<u> </u>		$\left - \right $		╞──╢
			ļ	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>						\mid	<u> </u>	↓∥
			 		<u> </u>		<u> </u>							-								<u> </u>			<u> </u>			<u> </u>					\parallel
Total	A/SM	-	<u> </u>	7	0	1	7	1	7	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	150 Jefferson Drive
--------------------	---------------------

LDC Report Date: January 15, 2016

Parameters: Chlorinated Pesticides

Validation Level II Level II

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 720-69116-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SB-12 (0-0.5')	720-69116-7	Soil	12/09/15
SB-12 (2-2.5')	720-69116-8	Soil	12/09/15
FD-1 (2-2.5')	720-69116-9	Soil	12/09/15
EB-1	720-69116-11	Water	12/09/15
SB-11 (0-0.5')	720-69116-12	Soil	12/09/15
SB-11 (2-2.5')	720-69116-13	Soil	12/09/15
SB-13 (0-0.5')	720-69116-15	Soil	12/09/15
SB-13 (2-2.5')	720-69116-16	Soil	12/09/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081A

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance check were not reviewed for level II validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB-1 was identified as an equipment blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS-720-194011 (All soil samples in SDG 720-69116-1)	Heptachlor epoxide	128 (68-120)	-	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples SB-12 (2-2.5') and FD-1 (2-2.5') were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Level II validation.

XII. Target Compound Identification

Raw data were not reviewed for Level II validation.

XIII. System Performance

Raw data were not reviewed for Level II validation.

XIII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

150 Jefferson Drive Chlorinated Pesticides - Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

150 Jefferson Drive Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

150 Jefferson Drive Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

LDC #:_	<u>35700A3a</u>	1
SDG #:	720-69116-1	
Laborat	ory: Test America Inc.	

VALIDATION COMPLETENESS WORKSHEET

Level II

Date:	1/11/14
- Page:_	4
Reviewer: 2nd Reviewer:	- Sty

METHOD: GC Chlorinated Pesticides (EPA SW846 Method 8081A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	AIN	
11.	GC Instrument Performance Check	N	
	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	EB= 4
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	Sw	ues 10
Х.	Field duplicates	ND	D = 2, 3
XI.	Compound quantitation/RL/LOQ/LODs	N	
XII.	Target compound identification	N	
XIII.	System Performance	N	
	Overall assessment of data	4	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID	Lab ID	Matrix	Date
Client ID 1 SB-12 (0-0.5')	720-69116-7	Soil	12/09/15
2 SB-12 (2-2.5') ()	720-69116-8	Soil	12/09/15
3 FD-1 (2-2.5') D	720-69116-9	Soil	12/09/15
4 EB-1	720-69116-11	Water	12/09/15
5 SB-11 (0-0.5')	720-69116-12	Soil	12/09/15
6 SB-11 (2-2.5')	720-69116-13	Soil	12/09/15
6 SB-11 (2-2.5') 7 SB-13 (0-0.5') 8 SB-13 (2-2.5') 9	720-69116-15	Soil	12/09/15
8 SB-13 (2-2.5')	720-69116-16	Soil	12/09/15
9			
10			
11			
12			
lotes:			

MB 720 - 194275

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPA SW 846 Method 8081/8082)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG. Chlordane	
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Aroclor-1248	HH. Chlordane (Technical)	
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA. Aroclor-1254	II. Arochlor 1262	
D. gamma-BHC	L. Endosulfan II	T. gamma-Chlordane	BB. Aroclor-1260	JJ. Aroclor 1268	
E. Heptachlor	M. 4,4'-DDD	U. Toxaphene	CC. 2,4'-DDD	KK. Oxychlordane	
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. 2,4'-DDE	LL. trans-Nonachlor	
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE. 2,4'-DDT	MM. cis-Nonachlor	
H. Endosulfan I	P. Methoxychlor	X. Aroclor-1232	FF. Hexachlorobenzene	NN.	

Notes:_____

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:<u>/</u>of___ Reviewer:<u>___FT</u>___ 2nd Reviewer: Pr

METHOD: JGC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? N/A N/A Y /N/ N/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

¥

<u>Y N 1/A/</u> Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

#	LCS/LCSD ID	Compound	LCS %R (Limits)		LCSD %R (Limits)		RPD (Limits)	_	Associated Samples	Qualifications
	105-720-	G	128 (68-	120	()	()	all sours	Jour / P (ND)
	194011		(()	()		
		· · · · · ·	()	()	()		
			()	()	()		
			((()		
	· · · ·		(<u>;</u>	(()		
				-	(<u>_</u>	(
					(<u> </u>	(
			(<u></u>)	()		
			((- <u>'</u>	(<u>,</u>		
			()	(()		
<u> </u>			(()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			((_()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
<u> </u>			()	()	()		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	()	()	()		
			(()	(

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	150 Jefferson Drive
--------------------	---------------------

LDC Report Date: January 15, 2016

Parameters:Polychlorinated Biphenyls as Congeners

Validation Level II Level II

Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 720-69116-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SB-15 (0-0.5')	720-69116-1	Soil	12/09/15
SB-15 (2-2.5')	720-69116-2	Soil	12/09/15
SB-14 (0-0.5')	720-69116-4	Soil	12/09/15
SB-14 (2-2.5')	720-69116-5	Soil	12/09/15
SB-12 (0-0.5')	720-69116-7	Soil	12/09/15
SB-12 (2-2.5')	720-69116-8	Soil	12/09/15
FD-1 (2-2.5')	720-69116-9	Soil	12/09/15
EB-1	720-69116-11	Water	12/09/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) as Congeners by Environmental Protection Agency (EPA) SW 846 Method 8082

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample EB-1 was identified as an equipment blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples SB-12 (2-2.5') and FD-1 (2-2.5') were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Level II validation.

XI. Target Compound Identification

Raw data were not reviewed for Level II validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

150 Jefferson Drive Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

150 Jefferson Drive

Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

150 Jefferson Drive Polychlorinated Biphenyls as Congeners - Field Blank Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

ALID.	ATION	COMPL	ETENESS	WORKSHEET
-------	-------	-------	----------------	-----------

LDC #: <u>35700A3b</u> SDG #: <u>720-69116-1</u> Laboratory: <u>Test America Inc.</u>

Level II

11/16 Date: Page:_ /of Reviewer: 2nd Reviewer

METHOD: GC Polychlorinated Biphenyls (EPA SW846 Method 8082)

V

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks		
V.	Field blanks	ND	FB=X
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates	Z	
VIII.	Laboratory control samples		Les IP
IX.	Field duplicates	ND	D = 6, 7
Х.	Compound quantitation/RL/LOQ/LODs	N	•
XI	Target compound identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

F

OTHER:

	Client ID	Lab ID	Matrix	Date		
1 I	SB-15 (0-0.5')	720-69116-1	Soil	12/09/15		
2 3 4	SB-15 (2-2.5')	720-69116-2	Soil	12/09/15		
3	SB-14 (0-0.5')	720-69116-4	Soil	12/09/15		
4	SB-14 (2-2.5')	720-69116-5	Soil	12/09/15		
5	SB-12 (0-0.5')	720-69116-7	Soil	12/09/15		
6	SB-12 (2-2.5')	720-69116-8	Soil	12/09/15		
	FD-1 (2-2.5')	720-69116-9	Soil	12/09/15		
7 8	EB-1	720-69116-11	Water	12/09/15		
9						
10						
11						
12						
Note	Notes:					
-, [MB 720- 194010					
	MB 720-194272					

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: 150 Jefferson Drive
- LDC Report Date: January 15, 2016
- Parameters: Lead
- Validation Level II Level II
- Laboratory: TestAmerica, Inc.

Sample Delivery Group (SDG): 720-69116-1

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
SB-12 (0-0.5')	720-69116-7	Soil	12/09/15
SB-11 (0-0.5')	720-69116-12	Soil	12/09/15
SB-13 (0-0.5')	720-69116-15	Soil	12/09/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6010B

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Instrument Calibration

Calibration data were not reviewed for Level II validation.

III. ICP Interference Check Sample Analysis

ICP Interference check sample analysis data were not reviewed for Level II validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Serial Dilution

Serial dilution was not performed for this SDG.

IX. Laboratory Control Samples/Standard Reference Material

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Sample Result Verification

Raw data were not reviewed for Level II validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

150 Jefferson Drive Lead - Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

150 Jefferson Drive Lead - Laboratory Blank Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

150 Jefferson Drive Lead - Field Blank Data Qualification Summary - SDG 720-69116-1

No Sample Data Qualified in this SDG

LDC #: <u>35700A4b</u> SDG #: 720-69116-1

VALIDATION COMPLETENESS WORKSHEET

Level II

Date: <u>1/8/16</u> Page: <u></u>of <u></u> Reviewer: <u></u> 2nd Reviewer: <u>50</u>

Laboratory: Test America Inc.

91 Lead METHOD: Metals (EPA SW 846 Method 6010B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
	Instrument Calibration	N	
111.	ICP Interference Check Sample (ICS) Analysis	N	
IV.	Laboratory Blanks	A	
V.	Field Blanks	\overline{N}	
VI.	Matrix Spike/Matrix Spike Duplicates	N	cS
VII.	Duplicate sample analysis	N.	
VIII.	Serial Dilution	\mathcal{N}	
IX.	Laboratory control samples / SRM	A	LCS/D SRM
Х.	Field Duplicates	Ň	,
XI.	Sample Result Verification	N	
	Overall Assessment of Data	LR	

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SB-12 (0-0.5')	720-69116-7	Soil	12/09/15
2	SB-11 (0-0.5')	720-69116-12	Soil	12/09/15
3	SB-13 (0-0.5')	720-69116-15	Soil	12/09/15
4				
5		·		
6				
7				
8				
9				
10	<u> </u>			
ote	es:			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: 150 Jefferson Drive

LDC Report Date: January 15, 2016

Parameters: Volatiles

Validation Level II Level II

Laboratory: Eurofins

Sample Delivery Group (SDG): 1512443A

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SV-9	1512443-01	Air	12/18/15
SV-10	1512443-02	Air	12/18/15
SV-7A	1512443-03	Air	12/21/15
SV-2A	1512443-04	Air	12/21/15
SV-3A	1512443-05	Air	12/21/15
SV-3A(DUP)	1512443-06	Air	12/21/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Level II validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

All canisters were cleaned as required by the method. The laboratory indicated that canister certification was performed by batch. No contaminants were found in the representative canister blank.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples SV-3A and SV-3A(DUP) were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	Concentration (ug/m ³)	
Compound	SV-3A	SV-3A(DUP)	RPD
2-Propanol	12	11U	200
1,1,1-Trichloroethane	6.3	6.2U	200
Benzene	13	14	7
Toluene	7.8	6.9	12
Tetrachloroethene	29	27	7
Ethylbenzene	12	8.7	32
m,p-Xylenes	55	40	32
o-Xylene	18	15	18
4-Ethyltoluene	13	10	26
1,2,4-Trimethylbenzene	14	11	24
Pentane	18	58	105

XI. Internal Standards

Internal standards data were not reviewed for Level II validation.

XII. Compound Quantitation

Raw data were not reviewed for Level II validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Level II validation.

XIV. System Performance

Raw data were not reviewed for Level II validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The leak check compound, pentane, was not detected in any of the client samples with the following exceptions:

Sample	Compound	Leak Check Compound Pentane concentration
SV-10	All TCL compounds	180 ug/m³
SV-7A	All TCL compounds	15 ug/m³
SV-3A	All TCL compounds	18 ug/m³
SV-3A(DUP)	All TCL compounds	58 ug/m³

Since the above sample detections for leak check compound pentane are less than 5% of the pentane concentration 580,000 ug/m³ detected in shroud sample SV-3A(Pentane) (from SDG 1512443B), no data were qualified.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

150 Jefferson Drive Volatiles - Data Qualification Summary - SDG 1512443A

No Sample Data Qualified in this SDG

150 Jefferson Drive Volatiles - Laboratory Blank Data Qualification Summary - SDG 1512443A

No Sample Data Qualified in this SDG

150 Jefferson Drive Volatiles - Field Blank Data Qualification Summary - SDG 1512443A

No Sample Data Qualified in this SDG

VALIDATION	COMPL	ETENESS	WORKSHEET
VALIDATION		LILNLUU	AAOUUUUU

Level II

LDC #: 35700B48 SDG #: 1512443A Laboratory: eurofins

11/16 Date: Page: /of Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
.	GC/MS Instrument performance check	N	
- 111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks / chuck per batch		
VI.	l J Field blanks	\sim	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ň	
IX.	Laboratory control samples	A	res IP
Х.	Field duplicates	لىد.	D=5,6
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
Note:	A = Acceptable ND = N	o compounds	detected D = Duplicate SB=Source blank

N = Not provided/applicable SW = See worksheet

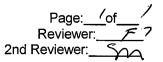
ND = No compounds detected
R = Rinsate
FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date	
1	SV-9	1512443-01	Air	12/18/15	
1 2 3 4 5	SV-10	1512443-02	Air	12/18/15	
3	SV-7A	1512443-03	Air	12/21/15	
4	SV-2A	1512443-04	Air	12/21/15	
5	SV-3A Q	1512443-05	Air	12/21/15	
6	SV-3A(DUP) 17	1512443-06	Air	12/21/15	
7					
8					
9					
10					
Notes:					
-	1512443A-07A				

1512443A-07B

TARGET COMPOUND WORKSHEET


METHOD: VOA

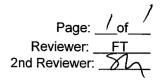
	· · · · · · · · · · · · · · · · · · ·			
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohoi	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2- Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	z1. 4- Ethyltoluene

AAI. Pentane

LDC#: 35700848

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GCMS VOA (EPA Method TO-15)


	Concentration (ug/m3)		RPD	
Compound	5	5 6		
Y1	12	11U	200	
N	6.3	6.2U	200	
v	13	14	7	
сс	7.8	6.9	12	
AA	29	27	7	
EE	12	8.7	32	
RRR	55	40	32	
SSS	18	15	18	
Z1	13	10	26	
DDD	14	11	24	
AA1	18	58	105	

C:\Users\ftanguilig\Desktop\35700B48.wpd

LDC #: 35700B48

M

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: GC/MS VOA (EPA Method TO-15)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>N N/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Shroud sample ID	Shroud sample result (Pentane)	Associated Samples and results	Qualifications
		SV-3A (Pentane)	580,000 ug/m ?	1-76	Since the leak
		prom SDG 1512443		1+4 = ND	check compound (pentane
		•		$2 = 180 \text{ ug/m}^{3}$	in the sample is
				$3 = 15 \text{ ng}/\text{m}^3$	less than 5% of the
				$5 = 18 \text{ mg/m}^3$	concentration in the
				$b = \sqrt{8} \cdot ug / m^3$	shroud sample, the
		· · · · · · · · · · · · · · · · · · ·		458	associated samples
					were not qualified
		· · · · · · · · · · · · · · · · · · ·			U V
			· · · · · · · · · · · · · · · · · · ·		

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

- Project/Site Name: 150 Jefferson Drive
- LDC Report Date: January 15, 2016
- Parameters: Volatiles
- Validation Level II Level II
- Laboratory: Eurofins

Sample Delivery Group (SDG): 1512443B

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
SV-3A(Pentane)	1512443-07	Air	12/21/15

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Level II data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Level II validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Level II validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Level II validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

All canisters were cleaned as required by the method. The laboratory indicated that canister certification was performed by batch. No contaminants were found in the representative canister blank.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were not required by the method.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standards data were not reviewed for Level II validation.

XII. Compound Quantitation

Raw data were not reviewed for Level II validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Level II validation.

XIV. System Performance

Raw data were not reviewed for Level II validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

150 Jefferson Drive Volatiles - Data Qualification Summary - SDG 1512443B

No Sample Data Qualified in this SDG

150 Jefferson Drive Volatiles - Laboratory Blank Data Qualification Summary - SDG 1512443B

No Sample Data Qualified in this SDG

150 Jefferson Drive Volatiles - Field Blank Data Qualification Summary - SDG 1512443B

No Sample Data Qualified in this SDG

AL	IDATION	COMPL	ETENESS	WORKSHEET
----	---------	-------	---------	-----------

Level II

LDC #: <u>35700C48</u> SDG #: <u>1512443B</u> Laboratory: <u>eurofins</u>

Date:___//// Page:__lof___/ Reviewer:_____ 2nd Reviewer:______

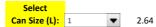
METHOD: GC/MS Volatiles (EPA Method TO-15)

ν

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
II.	GC/MS Instrument performance check	N	
11.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	canister cert by batch
VI.	Field blanks	N	
VII.	Surrogate spikes	N	· · · · · · · · · · · · · · · · · · ·
VIII.	Matrix spike/Matrix spike duplicates	2	not required
IX.	Laboratory control samples	AN	tes not required
Х.	Field duplicates	2	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	4	

Note:


A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	SV-3A(Pentane)	1512443-07	Air	12/21/15
2				
3				
4				
5				
6				
7				
8				
Note	S			
	151244313-080			

TO-15 Reporting Limit Calculator

		TO-15		Estimated
		Base Reportin	0	Sample RL
Compound	CAS#	ppbv	μg/m3	μg/m3
Freon 12	75-71-8	0.50	2.5	6.6
Freon 114	76-14-2 74-87-3	0.50	3.5	9.2
Chloromethane		5.0	10	26.4 3.4
Vinyl Chloride 1,3-Butadiene	75-01-4 106-99-0	0.50 0.50	1.3 1.1	3.4 2.9
Bromomethane	74-83-9	5.0	1.1	50.2
Chloroethane	75-00-3	2.0	5.3	14.0
Freon 11	75-69-4	0.50	2.8	7.4
Ethanol	64-17-5	2.0	3.8	10.0
Freon 113	76-13-1	0.50	3.8	10.0
1,1-Dichloroethene	75-35-4	0.50	2.0	5.3
Acetone	67-64-1	5.0	12	31.7
2-Propanol	67-63-0	2.0	4.9	12.9
Carbon Disulfide	75-15-0	2.0	6.2	16.4
3-Chloropropene	107-05-1	2.0	6.3	16.6
Methylene Chloride	75-09-2	5.0	17	44.9
Methyl tert-butyl ether	1634-04-4	0.50	1.8	4.8
trans-1,2-Dichloroethene	156-60-5	0.50	2.0	5.3
Hexane	110-54-3	0.50	1.8	4.8
1,1-Dichloroethane	75-34-3	0.50	2.0	5.3
2-Butanone (Methyl Ethyl Ketone)	78-93-3	2.0	5.9	15.6
cis-1,2-Dichloroethene	156-59-2	0.50	2.0	5.3
Tetrahydrofuran	109-99-9	0.50	1.5	4.0
Chloroform	67-66-3	0.50	2.4	6.3
1,1,1-Trichloroethane	71-55-6	0.50	2.7	7.1
Cyclohexane	110-82-7	0.50	1.7	4.5
Carbon Tetrachloride	56-23-5	0.50	3.1 2.3	8.2
2,2,4-Trimethylpentane Benzene	540-84-1 71-43-2	0.50	2.3 1.6	6.1 4.2
1,2-Dichloroethane	107-06-2	0.50 0.50	2.0	5.3
Heptane	142-82-5	0.50	2.0	5.3
Trichloroethene	79-01-6	0.50	2.0	7.1
1,2-Dichloropropane	78-87-5	0.50	2.3	6.1
1,4-Dioxane	123-91-1	2.0	7.2	19.0
Bromodichloromethane	75-27-4	0.50	3.4	9.0
cis-1,3-Dichloropropene	10061-01-5	0.50	2.3	6.1
4-Methyl-2-pentanone	108-10-1	0.50	2.0	5.3
Toluene	108-88-3	0.50	1.9	5.0
trans-1,3-Dichloropropene	10061-02-6	0.50	2.3	6.1
1,1,2-Trichloroethane	79-00-5	0.50	2.7	7.1
Tetrachloroethene	127-18-4	0.50	3.4	9.0
2-Hexanone	591-78-6	2.0	8.2	21.6
Dibromochloromethane	124-48-1	0.50	4.2	11.1
1,2-Dibromoethane (EDB)	106-93-4	0.50	3.8	10.0
Chlorobenzene	108-90-7	0.50	2.3	6.1
Ethyl Benzene	100-41-4	0.50	2.2	5.8
m,p-Xylene	108-38-3	0.50	2.2	5.8
o-Xylene	95-47-6	0.50	2.2	5.8
Styrene	100-42-5	0.50	2.1	5.5
Bromoform	75-25-2 98-82-8	0.50	5.2	13.7
Cumene 1,1,2,2-Tetrachloroethane	98-82-8 79-34-5	0.50 0.50	2.4 3.4	6.3 9.0
Propylbenzene	103-65-1	0.50	3.4 2.4	9.0 6.3
4-Ethyltoluene	622-96-8	0.50	2.4	6.3
1,3,5-Trimethylbenzene	108-67-8	0.50	2.4	6.3
1,2,4-Trimethylbenzene	95-63-6	0.50	2.4	6.3
1,3-Dichlorobenzene	541-73-1	0.50	3.0	7.9
1,4-Dichlorobenzene	106-46-7	0.50	3.0	7.9
alpha-Chlorotoluene	100-44-7	0.50	2.6	6.9
1,2-Dichlorobenzene	95-50-1	0.50	3.0	7.9
1,2,4-Trichlorobenzene	120-82-1	2.0	15	39.6
Hexachlorobutadiene	87-68-3	2.0	21	55.4
Naphthalene (by request)	91-20-3	1.0	5.2	13.8
TPH- Gasoline (by request)	NA	50	204	538.6

Assume post-sample can vacuum of 7.0 in Hg and no analytical dilution. (*Typical post-sample vacuum for TWA sample ranges from 4 in Hg to 10 in Hg*.)

Eurofins Air Toxics, Inc.

APPENDIX F: HUMAN HEALTH RISK SCREENING EVALUATION CALCULATIONS

Innovative solutions Sound science

March 11, 2016

Mr. Kurt Soenen Principal Engineer Cornerstone Earth Group 1259 Oakmead Parkway Sunnyvale, CA 94085

SUBJECT: Human Health Screening Risk Evaluation 150 Jefferson Drive Menlo Park, California

Dear Mr. Soenen:

The purpose of this letter report is to present the results of a Human Health Screening Risk Evaluation of soil and soil vapor sampling data collected in November 2014 and December 2015 at the above-referenced site. These samples were collected in support of future construction East Menlo Park Magnet High School. This evaluation was conducted in general accordance with the methods outlined in the Department of Toxic Substances Control (DTSC) Preliminary Endangerment Assessment (PEA) Guidance Manual (DTSC, 2015).¹ As discussed below, based on this evaluation, potential exposure to future site occupants via incidental soil ingestion, dermal contact with soil, and inhalation of vapor or particulates in outdoor air and inhalation of vapors in indoor air would not result in a public health risk under the conditions evaluated. As such, no further action should be required for future construction at the property.

Background

The approximately 2.17-acre project Site is located at 150 Jefferson Drive, California. The site is comprised of an asphalt parking lot and a warehouse building. The warehouse is currently occupied by Bay Associates Wire Technology, which uses the majority of the building for manufacturing of custom cable and wire products; the northern portion is used as office space. The manufacturing portion of the building is currently raised approximately 4 feet above grade to accommodate truck-loading bays along the eastern portion of the building. As part of site redevelopment, the building will be removed and the raised area will be removed and the site returned to the surrounding street grade.

¹ Department of Toxic Substances Control (DTSC). 2015. Preliminary Endangerment Guidance Manual (A guidance manual for evaluating hazardous substance release sites). October.

To support the proposed construction, Cornerstone Earth Group (Cornerstone) collected soil samples from a total of 13 locations (SB-1 through SB-4; SB-8 through SB-15; SV-8) (Cornerstone, 2015).² Soil borings extended to approximate depths ranging from 1.5 to 10.0 feet below existing grade. One or two discrete soil samples were collected from each boring at depths ranging from 0 to 0.5 feet to 9.5 to 10 feet below grade, for a total of 21 samples. Importantly, one of these samples, SB-4 at 1.0-1.5 feet below grade, was collected from the fill material underlying the raised portion of the warehouse, which will be removed as part of site redevelopment. Therefore, the data from this sample will not be included in this evaluation.

Cornerstone also collected soil vapor samples from 10 locations (SV-1 through SV-10). In November 2014, two soil vapor samples were collected from each of SV-1 through SV-8: one sample was collected immediately below the slab (subslab samples) and the other was collected at a depth of 5 to 10 feet below current grade. In 2015, single soil vapor samples were collected from new locations SV-9 and SV10 at a depth of approximately 5 feet below grade, and well as from three prior locations (SV-2, SV-3, and SV-9) at a depth of approximately 9 feet below grade. Seven of the eight subslab samples were collected within the fill material that will be removed as part of site redevelopment; therefore, these data will not be included in this evaluation. The eighth subslab sample was collected beneath a portion of the building that is currently at street grade. However, because the surface soil will be disturbed as part of site redevelopment, the data from this location is not likely representative of future site conditions and thus also not included.

Soil samples were analyzed for one or more of the following chemical suites: volatile organic compounds (VOCs) and total petroleum hydrocarbons in the gasoline range (TPHg) by EPA Test Method 8260B, TPH in the diesel and oil range (TPHd/o) by EPA Test Method 8015B with a silica gel cleanup, California Assessment Manual (CAM 17) metals by EPA Test Method 6010B/7471A, polyaromatic hydrocarbons (PAHs) by EPA Test Method 8270 or 8270SIM, organochlorine pesticides (OCPs) by EPA Test Method 8081A, and polychlorinated biphenyls (PCBs) by EPA Test Method 8082A. Soil vapor samples were analyzed for VOCs via EPA Test Method TO-15 and fixed gases (carbon dioxide, methane, and oxygen) by ASTM D-1946.

Tabular summaries of the analytical results for compounds detected in soil or soil vapor samples included in this evaluation are provided in Attachment A. Except as noted, the values represent detected concentrations above the laboratory reporting limit (RL) or less than values (<) equal to the RL. In some cases, the maximum detected concentration is below the RL in another sample <u>and</u> that RL is greater than the screening level (discussed further in the next section). In these cases, the RL was replaced by the method detection limit (MDL) or the detected concentration below the RL (J-flagged value). As shown in Attachment A, low concentrations of several PAHs and another semivolatile chemical, bis(2-ethylhexyl)phthalate, were detected in one or more of the discrete soil samples. Except for anthracene detected in one soil sample, the reported concentrations are J-flagged values. TPHd and/or TPHo, but not TPHg, were also detected at low

² Cornerstone Earth Group (Cornerstone). 2015. Revised PEA Work Plan, 150 Jefferson Drive, Menlo Park, California (Site Code 204273), dated November 13, 2015

concentrations in the some of samples analyzed. Aroclor 1260, a mixture of PCBs, was detected (J-flagged value) in a single soil sample at a low concentration. Similarly, low concentrations of two VOCs, acetone and xylenes, were detected in one sample (J-flagged values). Finally, several CAM metals also were detected in soil samples; metals occur naturally in soil and the detected concentrations appear consistent with regional background concentrations for these chemicals (see Attachment A). Several VOCs were detected in one or more of the soil vapor samples. Gasoline-related compounds benzene, toluene, ethylbenzene, and xylenes (BTEX), were detected in all the samples included in this evaluation, with the other VOCs detected much less frequently.

Screening Human Health Risk Evaluation

The screening human health risk evaluation outlined in the PEA Guidance Manual is intended to be a health-conservative evaluation of potential risks posed by chemicals at a site. For example, this evaluation assumes a site will be used for residential purposes regardless of actual or intended land use. Non-cancer hazard quotients (HQs) and incremental lifetime cancer risks (ILCRs) are estimated using an established human health risk-based residential screening concentration and the maximum detected concentration for each chemical as follows:

HQ = Maximum concentration/Screening concentration

ILCR = (Maximum concentration/Screening concentration) $\times 10^{-6}$

Where:

The screening concentrations are based on a target HQ of one and a target ILCR of one-in-a-million (1×10^{-6}) .

The chemical-specific HQs and ILCRs are each summed, regardless of the location of the maximum detected concentrations, to estimate the total non-cancer hazard index (HI) and total ILCR, respectively.³ If the total HI exceeds a value of one, then HIs are recalculated by summing HQs for chemicals affecting the same target organ (e.g., respiratory effects).

The screening concentrations used in this evaluation are U.S. EPA Regional Screening Levels (RSLs) for residential land use,⁴ modified as necessary based on DTSC Human Health Risk Assessment (HHRA) Note 3.⁵ The soil screening levels assume exposure via incidental soil ingestion, dermal contact with soil, and inhalation of vapors or resuspended particulates in ambient air. The soil vapor screening concentrations are based on RSLs for ambient air multiplied by a soil vapor to indoor air attenuation factor

³ Lead is traditionally evaluated separately using the LeadSpread model; however, because the maximum detected concentration is less than the DTSC screening level of 80 mg/kg (which is based on LeadSpread), no further assessment is needed.

⁴ U.S. Environmental Protection Agency (EPA). 2015. Regional Screening Level Summary Table (TR-1E-06, HQ=1). June.

⁵ Department of Toxic Substances Control (DTSC). 2015. Human Health Risk Assessment (HHRA) Note 3, DTSC-modified Screening Levels (DTSC-SLs). October.

(AF) of 0.001 as recommended by DTSC for new buildings.⁶ EPA RSLs are available for the majority of compounds detected in soil samples at the Site. When necessary, surrogate compounds were identified based on similarity in chemical structure or physical characteristics. The RSL for trivalent chromium, rather than hexavalent chromium, was used to evaluate total chromium detected in soil because, as noted above, total chromium concentrations are consistent with regional background. Finally, TPHd and TPHo were detected in several soil samples. EPA has not developed RSLs for these petroleum hydrocarbon mixtures; therefore, in accordance with the PEA Guidance Manual, Environmental Screening Levels (ESLs) developed by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), were used.⁷

Soil

The estimated non-cancer HQs and ILCRs for the individual chemicals detected in soil are shown in Table 1. These HQs and ILCRs include the contribution of what is believed to be background levels of metals, which are typically excluded if site-specific background data are available. In this case, regional data for background metals concentrations in soil are used to provide context for the evaluation, but were not used to eliminate background metals from the analysis prior to the risk calculations.

The majority of the non-cancer HQs are less than the target HQ of one; however, the HQ for two metals, arsenic and thallium, is above one. The total HI for all detected chemicals, including metals, is 30, which is well above the target HI of one. However, as noted above, the concentrations of all of the detected metals appear consistent with regional background. Excluding arsenic, the HI decreases to 4. When the HQs for all of the metals are excluded, the HI is 0.2, which is below the target HI.

Similarly, the estimated ILCRs for individual analytes are equal to or below the target ILCR of 1×10^{-6} except for arsenic. The total ILCR including arsenic is 9×10^{-5} . Excluding arsenic, the total ILCR is 9×10^{-7} , and excluding all metals, the total ILCR is 8×10^{-7} , both of which are below the target ILCR.

Soil Vapor

The estimated non-cancer HQs and ILCRs for the individual chemicals detected in soil vapor are shown in Table 2. The individual non-cancer HQs are all less than the target HQ of one, and the total HI is 0.3, which is also below the target HI of one. The individual ICLRs are less than the target ICLR of 1×10^{-6} , except for benzene, which has an ILCR of 2×10^{-6} . Note that the maximum benzene concentration is from a soil vapor sample collected in November 2014 (220 µg/m³). The benzene concentration in a soil vapor collected at the same general location and depth in December 2015 was 13 µg/m³. The other primary contributors included carbon tetrachloride, hexachlorobutadiene, and methylene chloride; however, the concentrations used in the risk calculations for these analytes were either the maximum RL or MDL, which is greater than the maximum detected value. The total ILCR is 5×10^{-6} .

⁶ Department of Toxic Substances Control (DTSC). 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October.

⁷ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2013. Environmental Screening Levels (ESLs). December.

Total Risk Estimates

The total non-cancer HI assuming exposure to chemicals in both soil (except naturally occurring metals) and soil vapor is 0.5, which is still below the target HI. The corresponding total ILCR, excluding all metals, is 5×10^{-6} .

Conclusions

This letter report presents the results of a human health screening risk evaluation conducted in general accordance with the DTSC PEA Guidance Manual. Non-cancer HQs and ILCRs were estimated based on maximum detected concentrations in soil or soil vapor and residential screening concentrations assuming exposure via incidental soil ingestion, dermal contact with soil, inhalation of resuspended particulates or vapors in ambient air, and inhalation of vapors in indoor air as a result of vapor intrusion. With the exception of naturally-occurring metals, which were detected at concentrations consistent with regional background levels, the total non-cancer HI is below and the total ILCR is slightly above generally accepted levels under the conditions evaluated. Given the conservative nature of this assessment, no further action should be required for future development of the property.

Please feel free to contact me at (510) 455-4769 (office), (707) 319-1741 (cell), or e-mail me at <u>gbrorby@toxstrategies.com</u>.

Sincerely,

-l. fm

Gregory P. Brorby, DABT Senior Managing Scientist

Attachment

Tables

	Maximum Soil		Non-Cancer Residential			Cancer Residential		
	Concentration	1	Screening Level		Noncancer	Screening Level		Excess
Chemical	(mg/kg)		(mg/kg)	Source/Basis	Hazard Index	(mg/kg)	Source/Basis	Cancer Risl
Acenaphthylene	0.067	(1)	3600	EPA RSL for acenaphthalene	1.9E-05	NA	NA	NA
Acetone	0.061	(1)	61000	EPA RSL	1.0E-06	NA	NA	NA
Antimony	2	T	31	EPA RSL	6.5E-02	NA	NA	NA
Anthracene	0.067	(1)	18000	EPA RSL	3.7E-06	NA	NA	NA
Aroclor 1260	0.05	(1)	NA	NA	NA	0.24	EPA RSL	2.1E-07
Arsenic	5.7	1	0.25	HERO Note 3	2.3E+01	0.067	HERO Note 3	8.5E-05
Barium	380	1	15000	EPA RSL	2.5E-02	NA	NA	NA
Benzo(a)anthracene	0.018	(2)	NA	NA	NA	0.16	EPA RSL	1.1E-07
Benzo(a)pyrene	0.0066	(2)	NA	NA	NA	0.016	EPA RSL	4.1E-07
Benzo(b)fluoranthene	0.0095	(2)	NA	NA	NA	0.16	EPA RSL	5.9E-08
Benzo(g,h,i)perylene	0.067	(1)	1800	EPA RSL for pyrene	3.7E-05	NA	NA	NA
Benzo(k)fluoranthene	0.014	(2)	NA	NA	NA	1.6	EPA RSL	8.8E-09
Beryllium	0.84	1	15	HERO Note 3	5.6E-02	1600	EPA RSL	5.3E-10
Bis(2-ethylhexyl)phthalate	0.043	J	1300	EPA RSL	3.3E-05	39	EPA RSL	1.1E-09
Cadmium	3.6		5.2	HERO Note 3	6.9E-01	2100	EPA RSL	1.7E-09
Chromium	110	(3)	36000	HERO Note 3 for chromium (III)	3.1E-03	NA	NA	NA
Cobalt	21	-	23	EPA RSL	9.1E-01	420	EPA RSL	5.0E-08
Copper	56	1	3100	EPA RSL	1.8E-02	NA	NA	NA
Chrysene	0.033	(2)	NA	NA	NA	16	EPA RSL	2.1E-09
Fluoranthene	0.067	(1)	2400	EPA RSL	2.8E-05	NA	NA	NA
Lead	12	(4)	80	HERO Note 3	NA	NA	NA	NA
Mercury	0.093	1.17	11	EPA RSL for elemental mercury	8.5E-03	NA	NA	NA
Molybdenum	6.7	· ·····	390	EPA RSL	1.7E-02	NA	NA	NA
Naphthalene	0.067	(1)	130	EPA RSL	5.2E-04	3.8	EPA RSL	1.8E-08
Nickel	64	\uparrow	490	HERO Note 3 for nickel soluble salts	1.3E-01	15000	EPA RSL	4.3E-09
Phenanthrene	0.067	(1)	1800	EPA RSL for pyrene	3.7E-05	NA	NA	NA
Pyrene	0.067	(1)	1800	EPA RSL	3.7E-05	NA	NA	NA
Silver	0.95	(1)	390	EPA RSL	2.4E-03	NA	NA	NA
Thallium	1.4	J.	0.78	EPA RSL for thallium soluble salts	1.8E+00	NA	NA	NA
TPHd	39	1	240	RWQCB ESL	1.6E-01	NA	NA	NA
ТРНо	130	1	11000	RWQCB ESL	1.2E-02	NA	NA	NA
Vanadium	100	1	390	EPA RSL	2.6E-01	NA	NA	NA
Kylenes	0.012	(1)	580	EPA RSL	2.1E-05	NA	NA	NA
Zinc	63	†``´	23000	EPA RSL	2.7E-03	NA	NA	NA
				Total	3E+01		Total	9E-05
				Total without arsenic	4E+00		Total without arsenic	9E-07
				Total without all metals	2E-01	Tota	I without all metals except	8E-07

Table 1. Estimated Noncancer Hazard Indexes and Excess Lifetime Cancer Risks Associated with Chemicals in Soil for a Residential Scenario - 150 Jefferson Drive, Menl	o Park CA
Table 1. Estimated Noncancel Hazard Indexes and Excess Energine Cancel Hisks Associated with Chemicals in Soli for a Residential Scenario - 150 Jenerson Drive, Wein	

Notes:

EPA RSL - U.S. EPA Regional Screening Levels (November 2015)

HERO Note 3 - DTSC Human and Ecological Risk Office Human Health Risk Assessment Note 3 (October 2015)

J - J-flagged value (detected below the reporting limit)

NA - Not applicable

RWQCB ESL - Regional Water Quality Control Board, San Francisco Bay Region, Environmental Screening Level (February 2016)

Concentrations within regional background

(1) Maximum RL, which is greater than the maximum detected value.

(2) Maximum MDL, which is greater than the maximum detected value.

(3) Total chromium; presumed to be trivalent chromium [chromium (III)] based on measured concentrations within regional background

(4) Lead is traditionally evaluated separately using the LeadSpread model; however, because the maximum detected concentration is less than the DTSC screening level of 80 mg/kg (which is based on LeadSpread), no further assessment is needed.

	Maximum Soil Va	apor	Non-Cancer Residential			Cancer Residential		
	Concentration	n	Screening Level ^a		Noncancer	Screening Level ^a		Excess
Chemical	(µg/m ³)		(µg/m ³)	Source/Basis	Hazard Index	(µg/m³)	Source/Basis	Cancer Risk
Acetone	120		32000000	EPA RSL	3.8E-06	NA	NA	NA
Benzene	220		3100	HERO Note 3	7.1E-02	97	HERO Note 3	2.3E-06
Bromomethane	490	(1)	5200	EPA RSL	9.4E-02	NA	NA	NA
2-Butanone (MEK)	150	(1)	5200000	EPA RSL	2.9E-05	NA	NA	NA
Carbon disulfide	710	· · `· ·	730000	EPA RSL	9.7E-04	NA	NA	NA
Carbon tetrachloride	42	(1)	42000	HERO Note 3	1.0E-03	67	HERO Note 3	6.3E-07
Chloroform	33	(1)	100000	EPA RSL	3.3E-04	120	NA	2.8E-07
Chloromethane	260	(1)	94000	EPA RSL	2.8E-03	NA	NA	NA
Cyclohexane	3500	· · `· ·	6300000	EPA RSL	5.6E-04	NA	NA	NA
1,3-Dichlorobenzene	34	(1)	830000	EPA RSL for 1,4-dichlorobenzene	4.1E-05	260	EPA RSL for 1,4-dichlorobenzene	1.3E-07
1,1-Dichloroethene	50	(1)	73000	HERO Note 3	6.8E-04	NA	NA	NA
Dichlorodifluoromethane	62	(1)	100000	EPA RSL	6.2E-04	NA	NA	NA
Ethanol	200	~~~~	21000000	EPA RSL for methanol	9.5E-06	NA	NA	NA
Ethylbenzene	130	-	1000000	EPA RSL	1.3E-04	1100	EPA RSL	1.2E-07
4-Ethyl toluene	120	•••••••	100000	EPA RSL for xylene	1.2E-03	NA	NA	NA
Heptane	33		730000	EPA RSL for hexane	4.5E-05	NA	NA	NA
Hexachlorobutadiene	57	(2)	4200	HERO Note 3	1.4E-02	130	EPA RSL	4.4E-07
Hexane	34	1	730000	EPA RSL	4.7E-05	NA	NA	NA
2-Hexanone	210	(1)	31000	EPA RSL	6.8E-03	NA	NA	NA
Isopropanol	130	~~~~	210000	EPA RSL	6.2E-04	NA	NA	NA
Isopropylbenzene (cumene)	33	(1)	420000	EPA RSL	7.9E-05	NA	NA	NA
Methyl t-butyl ether (MTBE)	45	(1)	3100000	EPA RSL	1.5E-05	11000	EPA RSL	4.1E-09
4-Methyl-2-pentanone (MIBK)	28	(1)	3100000	EPA RSL	9.0E-06	NA	NA	NA
Methylene chloride	440	(1)	420000	HERO Note 3	1.0E-03	1000	HERO Note 3	4.4E-07
Pentane	180	(-/	1000000	EPA RSL	1.8E-04	NA	NA	NA
n-Propylbenzene	36	•	1000000	EPA RSL	3.6E-05	NA	NA	NA
Tetrachloroethene (PCE)	85	(1)	37000	HERO Note 3	2.3E-03	480	HERO Note 3	1.8E-07
Tetrahydrofuran	88	11-1	2100000	EPA RSL	4.2E-05	NA	NA	NA
Toluene	210		310000	HERO Note 3	6.8E-04	NA	NA	NA
1,2,4-Trichlorobenzene	170	(1)	2100	EPA RSL	8.1E-02	NA	NA	NA
1,1,1-Trichloroethane	69	(1)	1000000	HERO Note 3	6.9E-05	NA	NA	NA
Trichloroethene	68		2100	EPA RSL	3.2E-02	480	EPA RSL	1.4E-07
memoroethene	08	(1)	2100	EPA RSL for 1,1,2-trichloro-	J.2L-02	460		1.407
Trichlorofluoroethane	71	(1)	31000000	1,2,2-trifluoroethane (Freon 113)	2.3E-06	NA	NA	NA
1,1,2-Trichloro-1,2,2-								
trifluoroethane (Freon 113)	96	(1)	31000000	EPA RSL	3.1E-06	NA	NA	NA
1,2,4-Trimethylbenzene	110]	7300	EPA RSL	1.5E-02	NA	NA	NA
1,3,5-Trimethylbenzene	36		42000	HERO Note 3	8.6E-04	NA	NA	NA
2,2,4-Trimethylpentane	27	(1)	730000	EPA RSL for hexane	3.7E-05	NA	NA	NA
o-Xylene	160	T	100000	EPA RSL	1.6E-03	NA	NA	NA
				Total	3E-01		Total	5E-06

Table 2. Estimated Noncancer Hazard Indexes and Excess Lifetime Cancer Risks Associated with Chemicals in Soil Vapor for a Residential Scenario - 150 Jefferson Drive, Menlo Park, CA

Notes:

^a Soil vapor screening level based on ambient air screening level divided by an attenuation factor of 0.001 for future residential buildings (DTSC, 2011)

EPA RSL - U.S. EPA Regional Screening Levels (November 2015)

HERO Note 3 - DTSC Human and Ecological Risk Office Human Health Risk Assessment Note 3 (October 2015)

J - J-flagged value (detected below the reporting limit)

NA - Not applicable

(1) Maximum RL, which is greater than the maximum detected value.

(2) Maximum MDL, which is greater than the maximum detected value.

Attachment A

Summary Tables of Soil and Soil Vapor Analytical Results from Cornerstone Earth Group (2015)

											1						1		
Boring ID	Sample ID	Date	Depth (feet)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Silver	Thallium	Vanadium	Zinc
SB-1	SB-1 (1-1.5)	11/21/2014	1-11/2	2	2.4	97	< 0.34	0.29	110	21	56	0.82	0.085	<1.7	64	0.26	1.4	100	53
SB-1	SB-1 (9.5-10)	11/21/2014	91⁄2-10																
SB-2	SB-2 (0.5-1)	11/21/2014	1⁄2-1	<1.9	3.3	380	0.13	0.53	33	8	25	3.9	0.044	0.75	34	<0.95	< 0.55 4	49	48
SB-2	SB-2 (9.5-10)	11/21/2014	91⁄2-10																
SB-3	SB-3 (0.5-1)	11/21/2014	1⁄2-1	<1.5	3.7	210	0.5	0.35	34	9.1	23	6.1	0.047	0.83	37	<0.76	< 0.44 4	32	48
SB-3	SB-3 (9.5-10)	11/21/2014	91⁄2-10																
SB-4	SB-4 (5-5.5)	11/20/2014	5-51/2																
SB-8	SB-8 (0.5-1)	11/21/2014	1⁄2-1	0.42	5.7	210	0.32	0.35	39	13	22	10	0.022	6.7	41	<0.88	< 0.51 4	40	50
SB-9	SB-9 (0.5-1)	11/21/2014	1⁄2-1	0.59	5.5	220	0.72	3.6	49	11	30	12	0.044	1.1	45	0.16	< 0.46 4	48	62
SB-10	SB-10 (0.5-1)	11/21/2014	1⁄2-1	0.49	5.5	200	0.84	0.27	49	11	28	6.3	0.028	0.56	46	<0.88	< 0.51 4	44	63
SB-11	SB-11 (0-0.5')	12/9/2015	0-1/2									7.4							
SB-12	SB-12 (0-0.5')	12/9/2015	0-1/2									9.9							
SB-12	SB-12 (2-2.5')	12/9/2015	2-21/2																
SB-12 Field Dup.	FD-1 (2-2.5')	12/9/2015	2-21/2																
SB-13	SB-13 (0-0.5')	12/9/2015	0-1/2									8.8							
SB-14	SB-14 (0-0.5')	12/9/2015	0-1/2																
SB-14	SB-14 (2-2.5')	12/9/2015	2-21/2																
SB-15	SB-15 (0-0.5')	12/9/2015	0-1/2																
SB-15	SB-15 (2-2.5')	12/9/2015	2-21/2																
SV-8	SV-8 (1-1.5)	11/20/2014	1-11/2	0.56	4.4	95	0.2	0.13	29	9.1	21	6.6	0.093	<1.7	30	< 0.85	< 0.50 4	38	43
	I DTSC-SL ¹	Cancer Er	ndpoint	NE	0.067 (11 ⁹)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residentia	IDISC-SL	Non-Cancer	Endpoint	NE	0.25	NE	15	5.2	36000	NE	NE	80 ³	0.89	NE	490	NE	NE	NE	NE
Bosidon	tial RSL ²	Carcinogenic	Target Risk	NE	0.68	NE	1600	2100	NE	420	NE	NE	NE	NE	15000	NE	NE	NE	NE
Residen		Non-Cancer C	hild Hazard	31	35	15000	160	71	120000	23	3100	400	11	390	1500	390	0.78	390	2300
Scott, 1991 6	Back	ground Range			0.2 to 5.5		0.3 to 1.4	0.05 to 1.7	30.5 to 72		23.8 to 47.5	6.8 to 16.1	0.05 to 0.90		46.4 to 101			39 to 288	47.7 to 82.8
50011, 1991		ackground Det	ection	22	20		3.2	14	170		67	54	1.3		145	4.8	3.8		120
Bradford, 1996 7	Background Range			0.15 to 1.95	0.6 to 11	133 to 1,400	0.25 to 2.7	0.05 to 1.7	23 to 1,579	2.7 to 46.9	9.1 to 96.4	12.4 to 97.1	0.05 to 0.90	0.1 to 9.6	9 to 509	0.1 to 8.3	.42 to 0.984	39 to 288	88 to 236
5 autoru, 1990	Upper Quartile		0.73	4.7	625	1.53	0.44	115	18.3	36.6	26.7	0.34	1.4	56	0.53	1.1	134	170	
LBNL, 2009 8	90 th Percentile			<6	28	410	1	5.6	120	25	63	43	0.42	4.8	272	2.9	10	90	140
LONL, 2009	95% Upper Tolerance Limit (UTL)		(UTL)	5.5	19.1	323.6	1	2.7	99.6	22.2	69.4	16.1	0.4	7.4	119.8	1.8	7.6	74.3	106.1
Duverge, 2011 9		Mean			4.6														
Duverge, 2011	99	th Percentile			11														

Table F.1 - Analytical Results of Soil Samples

(Concentrations in mg/kg)

1 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

2 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015

3 California Human Health Screening Level (CHHSL), CalEPA - September 2010.

4 Method Detection Limit (MDL) value

5 Environmental Screening Level (ESL), RWQCB, San Francisco Bay Region - December 2013

6 Scott, Christina. December 1991. Background Metal Concentrations in Soils in Northern Santa Clara County.

7 Bradford, et. al. March 1996. Background Concentrations of Trace and Major Elements in California Soils.

8 LBNL, 2009. Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory.

9 Duverge, 2011. Establishing Backround Arsenic in Soil of the Urbanized San Francisco Bay Region.

< Not detected at or above laboratory reporting limit or MDL

NE Not Established

--- Not Analyzed

BOLD Concentration exceeds selected environmental screening criteria

Note: Highlighted concentration denotes estimated value that is greater than the method detection limit but less than the laboratory reporting limit.

150 Jefferson Drive Menlo Park, CA 166-14-8

Table F.1 - Analytical Results of Soil Samples

(Concentrations in mg/kg)

Boring I D	Sample I D	Date	Depth (feet)	Xylenes	Acetone	ТРНА	ТРНо	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(g,h,i)perylene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Chrysene	Fluoranthene	Naphthalene	Phenanthrene	Pyrene	Bis(2- ethylhexyl)phthalate	Aroclor 1260
SB-1	SB-1 (1-1.5)	11/21/2014	1-1½	0.0039	< 0.052	39	130	<0.067	<0.067	< 0.018 4	<0.067	< 0.0066	< 0.0095	<0.0041	< 0.033 4	<0.067	< 0.067	<0.067	<0.067	0.043	< 0.049
SB-1	SB-1 (9.5-10)	11/21/2014	91⁄2-10	< 0.0082	< 0.041	0.77	<49										< 0.0082				
SB-2	SB-2 (0.5-1)	11/21/2014	1⁄2-1	< 0.012	< 0.061	24	77	< 0.066	<0.066	< 0.018 4	<0.066	< 0.0066	< 0.0094	< 0.014 4	< 0.033 4	<0.066	<0.066	<0.066	<0.066	0.039	< 0.049
SB-2	SB-2 (9.5-10)	11/21/2014	91⁄2-10	< 0.0085	< 0.043	< 0.98	<49										< 0.0085				
SB-3	SB-3 (0.5-1)	11/21/2014	1/2-1	< 0.01	0.026	7.7	27	< 0.067	<0.067	< 0.018 4	< 0.067	< 0.0066	< 0.0095	< 0.014 4	< 0.033 4	< 0.067	< 0.067	< 0.067	<0.067	0.022	< 0.05
SB-3	SB-3 (9.5-10)	11/21/2014	9½-10	<0.0088	<0.044	<1.0	<50										<0.0088				
SB-4	SB-4 (5-5.5)	11/20/2014	5-51/2	< 0.0079		0.96	<50										< 0.0079				
SB-8	SB-8 (0.5-1)	11/21/2014	1/2-1			1.3	<50	< 0.0049	< 0.0049	< 0.0049	<0.0049	0.0014	0.0027	< 0.0010	0.0015	0.0029	< 0.0049	0.0018	0.0026		< 0.049
SB-9	SB-9 (0.5-1)	11/21/2014	1/2-1			1.2	<49	0.002	0.005	0.0019	0.0022	0.0018	0.0035	0.0011	0.0019	0.0034	0.003	0.0023	0.0035		< 0.049
SB-10	SB-10 (0.5-1)	11/21/2014	1⁄2-1			< 0.99	<49	<0.0049	< 0.0049	<0.0049	<0.0049	<0.0049		< 0.0010	< 0.0007	0.001	<0.0049	<0.0049	0.0009		< 0.05
SB-11	SB-11 (0-0.5')	12/9/2015	0-1/2																		
SB-12	SB-12 (0-0.5')	12/9/2015	0-1/2																		< 0.049
SB-12	SB-12 (2-2.5')	12/9/2015	2-21/2																		< 0.048
SB-12 Field Dup.	FD-1 (2-2.5')	12/9/2015	2-21/2																		< 0.049
SB-13	SB-13 (0-0.5')	12/9/2015	0-1/2																		
SB-14	SB-14 (0-0.5')	12/9/2015	0-1/2																		0.0061
SB-14	SB-14 (2-2.5')	12/9/2015	2-21/2																		< 0.049
SB-15	SB-15 (0-0.5')	12/9/2015	0-1/2																		< 0.049
SB-15	SB-15 (2-2.5')	12/9/2015	2-21/2																		< 0.048
SV-8	SV-8 (1-1.5)	11/20/2014	1-1½	< 0.0098	< 0.049	<1.0	<50	<0.066	<0.066	< 0.018 4	<0.066	< 0.0066	< 0.0094	< 0.014 4	< 0.033 4	<0.066	< 0.066	<0.066	<0.066	< 0.33	< 0.048
Residentia	al DTSC-SL ¹	Cancer Er		NE	NE	100 5	100 5	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
		Non-Cancer	· ·	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Residen	ntial RSL ²	Carcinogenic	-	NE	NE	NE	NE	NE	NE	0.16	NE	0.016	0.16	1.6	16	NE	3.8	NE	NE	39	0.24
		Non-Cancer C	hild Hazard	580	6100	NE	NE	NE	18000	NE	NE	NE	NE	NE	NE	2400	130	NE	1800	1300	NE

1 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

2 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015

3 California Human Health Screening Level (CHHSL), CalEPA - September 2010.

4 Method Detection Limit (MDL) value

< Not detected at or above laboratory reporting limit or MDL

NE Not Established

--- Not Analyzed

BOLD Concentration exceeds selected environmental screening criteria

Note: Highlighted concentration denotes estimated value that is greater than the method detection limit but less than the laboratory reporting limit.

Table F.2 - Analytical Results of Soil Vapor Samples

(Concentrations in µg/m³)

Sample I D	Date	Notes	Sample Location	Benzene	Toluene	Ethylbenzene	MTBE	1,1 - DCE	1,1,1-TCA	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	2,2,4-Trimethylpentane	2-Butanone (MEK)	2-Hexanone	4-Ethyl Toluene	4-Methyl-2-Pentanone (MI BK)	Acetone	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chloroform
SV-1D5	11/24/2014	- 1 from street grade	SV-1D5	5	3.3	1.8	<4.2	<4.6	<6.3	<34	3.6	1.1	<7.0	<5.4	12	<19	3.8	1	53	<45	11	<7.3	<5.7
SV-2A	12/21/2015	- 5 from street grade	SV-2A	9.9	7.3	25	<4.2	<4.6	<6.3	<34	18	7.6	<7.0	1.9	2.8	<19	20	<4.8	13	4.1	3	<7.3	<5.7
SV-2D10	11/25/2014	 6 from street grade 	SV-2D10	78	130	38	<18	<20	<27	<150	35	11	3.8	9.1	<59	<82	35	<20	50	<190	350	<31	8.2
SV-3A	12/21/2015	- 5 from street grade	SV-3A	13	7.8	12	<4.1	<4.5	6.3	<34	14	4.5	<6.9	0.91	<14	<19	13	<4.7	7.1	5.1	3.2	<7.2	<5.6
SV-3A(DUP)	12/21/2015	SV-3A Field Duplicate Sample	SV-3A(DUP)	14	6.9	8.7	<4.1	<4.5	5.6	<34	11	3.4	<6.8	<5.3	2.6	<18	10	<4.6	11	3.7	3.1	<7.1	<5.5
SV-3D10	11/24/2014	 6 from street grade 	SV-3D10	220	210	59	<45	<50	<69	21	75	22	12	13	<150	<210	77	13	79	<490	710	<18 4	32
SV-4D5	11/24/2014	- 1 from street grade	SV-4D5	10	15	6.4	<4.1	1.7	16	<34	12	4.4	1.1	<5.4	12	<19	12	2.4	52	<45	26	<7.2	<5.6
SV-5D5	11/25/2014	- 1 from street grade	SV-5D5	5.6	12	8.7	<4.1	<4.5	2.4	8.1	16	4.4	1.4	<5.3	15	<18	15	2.9	54	<44	19	<7.1	3.9
SV-6D5	11/24/2014	- 1 from street grade	SV-6D5	12	17	9	0.87	<4.6	46	<34	18	5.6	1.5	<5.4	45	3.2	18	4.2	120	<45	58	<7.3	<5.6
SV-7A	12/21/2015	 5 from street grade 	SV-7A	23	24	52	<4.1	4.8	45	<34	22	11	<6.8	3.8	14	<19	33	<4.7	54	4.2	3.4	<7.2	<5.6
SV-7D10	11/25/2014	 6 from street grade 	SV-7D10	160	38	6.7	<24	11	18	34	5.5	<33	7.4	7	<80	<110	<33	<28	36	<260	340	<42	<33
SV-8D5	11/25/2014	- 1 from street grade	SV-8D5	80	31	5.8	<20	<23	<31	<170	<28	<28	<34	<27	<67	<93	<28	<23	36	<220	230	<36	<28
SV-9	12/18/2015	- 5 from street grade	SV-9	4.2	33	130	<4.0	<4.4	<6.0	<33	69	25	<6.7	21	3.8	<18	80	<4.5	15	5.5	3.9	<7.0	<5.4
SV-10	12/18/2015	 5 from street grade 	SV-10	1	32	110	<3.8	<4.2	<5.7	<31	110	36	<6.3	12	6	<17	120	<4.3	26	3.8	21	<6.6	2.2
		Ambient Air Cancer Endpoint		0.097	NE	NE	NE	NE	NE	0.39	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.067	NE
Residential	AF=0	.001 ³ (Indoor Air / Subsurface Soi	l Gas)	97	NE	NE	NE	NE	NE	390	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	67	NE
DTSC-SL ¹		Ambient Air Non-Cancer Endpoint		3.1	310	NE	NE	73	1,000	NE	NE	42	NE	NE	NE	NE	NE	NE	NE	NE	NE	42	NE
	AF=0	.001 ³ (Indoor Air / Subsurface Soi	I Gas)	3100	310000	NE	NE	73000	1000000	NE	NE	42000	NE	NE	NE	NE	NE	NE	NE	NE	NE	42000	NE
	I	ndoor Air Carcinogenic Target Ris	k	0.36	NE	1.1	11	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.47	0.12
Residential	AF=0	.001 ³ (Indoor Air / Subsurface Soi	l Gas)	360	NE	1100	11000	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	470	120
RSL ²		Indoor Air Non-Cancer Hazard		31	5200	1000	3100	210	5200	2.1	7.3	NE	NE	NE	5200	31	NE	3100	3,200	5.2	730	100	100
	AF=0	.001 ³ (Indoor Air / Subsurface Soi	l Gas)	31000	5200000	1000000	3100000	210000	5200000	2100	7300	NE	NE	NE	5200000	31000	NE	3100000	3200000	5200	730000	100000	100000

 1
 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

 2
 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015.

Calculated "contaminant source" screening level using an Attenuation Factor (AF) = 0.001 for future residential building type (DTSC, 2011) 3

Method Detection Limit (MDL) value
 Not detected at or above laboratory reporting limit

NE Not Established

Not Analyzed

BOLD Concentration exceeds selected environmental screening criteria

Note: Highlighted concentration denotes estimated value that is greater than the method detection limit but less than the laboratory reporting limit.

Table F.2 - Analytical Results of Soil Vapor Samples (Concentrations in µg/m³)

Sample I D	Date	Notes	Sample Location	Chloromethane	Cyclohexane	Dichlorodifluoromethane	Freon 113	Heptane	Hexachlorobutadiene	Hexane	Isopropanol	Isopropylbenzene	Methylene Chloride	n-Propylbenzene	o-xylene	PCE	TCE	Tetrahydrofuran	Trichlorofluoromethane	Ethanol	Pentane	Carbon Dioxide (%)	Oxygen (%)
SV-1D5	11/24/2014	- 1 from street grade	SV-1D5	<24	4.4	2.7	<8.9	<4.8	<49	<4.1	3.8	<5.7	<40	0.7	2.9	<7.9	0.53	26	1.5	13		12	8.1
SV-2A	12/21/2015	- 5 from street grade	SV-2A	<24	<4.0	2.5	<8.9	2.9	<49	<4.1	18	5.2	6.1	6	40	4.2	<6.2	<3.4	2.3	5.4	<14	6.4	14
SV-2D10	11/25/2014	 6 from street grade 	SV-2D10	<100	2,500	<25	<38	25	<23 4	28	54	<24	<170	7.1	47	<34	1.8	29	<28	200		0.29	17
SV-3A	12/21/2015	- 5 from street grade	SV-3A	<24	<3.9	2.4	<8.8	<4.7	<49	<4.0	12	2.5	2.3	3.6	18	29	<6.2	<3.4	1.3	<8.6	18	15	6.8
SV-3A(DUP)	12/21/2015	SV-3A Field Duplicate Sample	SV-3A(DUP)	<23	<3.9	2.6	<8.7	<4.6	<48	<4.0	7.2	2.4	3	2.9	15	27	<6.1	<3.3	1.3	4.8	58	15	6.9
SV-3D10	11/24/2014	 6 from street grade 	SV-3D10	<260	3,500	<62	<96	25	<57 4	34	130	6.4	<440	16	77	<85	<68	88	<71	<95		3.8	12
SV-4D5	11/24/2014	- 1 from street grade	SV-4D5	<24	42	1.4	8.2	<4.7	<49	<4.0	5.5	0.66	<40	2.3	9.9	<7.8	0.51	39	1.8	3.9		12	4.2
SV-5D5	11/25/2014	- 1 from street grade	SV-5D5	<23	33	2	<8.7	<4.6	6.6	<4.0	3.1	0.52	<39	2.7	11	<7.7	<6.1	43	1.5	5.9		8.6	12
SV-6D5	11/24/2014	- 1 from street grade	SV-6D5	<24	14	2.3	37	<4.7	<49	<4.1	8.3	0.82	<40	3.1	14	<7.8	<6.2	74	4.3	6.5		9.2	9
SV-7A	12/21/2015	- 5 from street grade	SV-7A	7.2	2.3	2.4	50	5.8	<49	<4.0	31	9.9	<40	10	71	9.8	5.5	<3.4	4	17	15	6.2	13
SV-7D10	11/25/2014	 6 from street grade 	SV-7D10	<140	27	<33	<52	16	54	31	50	<33	<230	<33	7.4	<46	<36	51	<38	<51		0.68	16
SV-8D5	11/25/2014	- 1 from street grade	SV-8D5	<120	20	<28	< 4.4	<23	<26 4	18	47	<28	<200	<28	3.3	< 39	<31	35	< 32	32		0.97	16
SV-9	12/18/2015	- 5 from street grade	SV-9	<23	7	2.7	<8.5	33	<47	7.4	4.1	21	<38	25	150	9.3	<6.0	1.2	1.2	5.3	<13	3.4	16
SV-10	12/18/2015	 5 from street grade 	SV-10	<22	5.2	5	<8.0	18	<45	4	130	26	2.5	36	160	5.1	<5.6	1.6	2.1	29	180	5.6	16
		Ambient Air Cancer Endpoint		NE	NE	NE	NE	NE	NE	NE	NE	NE	1	NE	NE	0.48	NE	NE	NE	NE	NE	NE	NE
Residential	AF=0	.001 ³ (Indoor Air / Subsurface Soi	l Gas)	NE	NE	NE	NE	NE	NE	NE	NE	NE	1000	NE	NE	480	NE	NE	NE	NE	NE	NE	NE
DTSC-SL ¹		Ambient Air Non-Cancer Endpoint		NE	NE	NE	NE	NE	4.2	NE	NE	NE	420	NE	NE	37	NE	NE	NE	NE	NE	NE	NE
	AF=0	.001 ³ (Indoor Air / Subsurface Soi	l Gas)	NE	NE	NE	NE	NE	4200	NE	NE	NE	420000	NE	NE	37000	NE	NE	NE	NE	NE	NE	NE
		Indoor Air Carcinogenic Target Risk	k	NE	NE	NE	NE	NE	0.13	NE	NE	NE	100	NE	NE	11	0.48	NE	NE	NE	NE	NE	NE
Residential	AF=0	.001 ³ (Indoor Air / Subsurface Soil	l Gas)	NE	NE	NE	NE	NE	130	NE	NE	NE	100000	NE	NE	11000	480	NE	NE	NE	NE	NE	NE
RSL ²		Indoor Air Non-Cancer Hazard		94	6300	100	31000	NE	NE	730	210	420	630	1000	100	42	2.1	2100	NE	NE	1000	NE	NE
	AF=0	.001 ³ (Indoor Air / Subsurface Soil	l Gas)	94000	6300000	100000	3.1E+07	NE	NE	730000	210000	420000	630000	1000000	100000	42000	2100	2100000	NE	NE	1000000	NE	NE

 1
 DTSC - Recommended Screening Level (SL), HERO Note 3 - October 2015

 2
 Regional Screening Level (RSL) HQ=1, USEPA Region 9 - November 2015.

3 Calculated "contaminant source" screening level using an Attenuation Factor (AF) = 0.001 for future residential building type (DTSC, 2011)

4 Method Detection Limit (MDL) value

< Not detected at or above laboratory reporting limit

NE Not Established

Not Analyzed ---

BOLD Concentration exceeds selected environmental screening criteria Note: Highlighted concentration denotes estimated value that is greater than the method detection limit but less than the laboratory reporting limit.